OAK

An analysis of disease-gene relationship from Medline abstracts by DigSee

Metadata Downloads
Abstract
Diseases are developed by abnormal behavior of genes in biological events such as gene regulation, mutation, phosphorylation, and epigenetics and post-translational modification. Many studies of text mining attempted to identify the relationship between gene and disease by mining the literature, but they did not consider the biological events in which genes show abnormal behaviour in response to diseases. In this study, we propose to identify disease-related genes that are involved in the development of disease through biological events from Medline abstracts. We identified associations between 13,054 genes and 4,494 disease types, which cover more disease-related genes than manually curated databases for all disease types (e.g., Online Mendelian Inheritance in Man) and also than those for specific diseases (e.g., Alzheimer's disease and hypertension). We show that the text mining findings are reliable, as per the PubMed scale, in that the disease-disease relationships inferred from the literature-wide findings are similar to those inferred from manually curated databases in a well-known study. In addition, literature-wide distribution of biological events across disease types reveals different characteristics of disease types.
Author(s)
Kim, JeongkyunKim, Jung-jaeLee, Hyunju
Issued Date
2017-01
Type
Article
DOI
10.1038/srep40154
URI
https://scholar.gist.ac.kr/handle/local/13926
Publisher
Nature Publishing Group
Citation
Scientific Reports, v.7
ISSN
2045-2322
Appears in Collections:
Department of AI Convergence > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.