OAK

Lessons from the swamp: developing small molecules that confer salamander muscle

Metadata Downloads
Author(s)
JungIn UmDa‑Woon JungWilliams, Darren R
Type
Article
Citation
Clinical and Translational Medicine
Issued Date
2017-03
Abstract
The ability of salamanders, such as newts, to regenerate damaged tissues has been studied for centuries. A prominent example of this regenerative power is the ability to re-grow entire amputated limbs. One important step in this regeneration process is skeletal muscle cellularization, in which the muscle fibers break down into dedifferentiated, mononuclear cells that proliferate and form new muscle in the replacement limb. In contrast, mammalian skeletal muscle does not undergo cellularization after injury. A significant proportion of research about tissue regeneration in salamanders aims to characterize regulatory genes that may have mammalian homologs. A less mainstream approach is to develop small molecule compounds that induce regeneration-related mechanisms in mammals. In this commentary, we discuss progress in discovering small molecules that induce cellularization in mammalian muscle. New research findings using these compounds has also shed light on cellular processes that regulate cellularization, such as apoptotic signaling. Although formidable technical hurdles remain, this progress increases our understanding of tissue regeneration and provide opportunities for developing small molecules that may enhance tissue repair in humans.
Publisher
Springer Verlag
ISSN
2001-1326
DOI
10.1186/s40169-017-0143-8
URI
https://scholar.gist.ac.kr/handle/local/13823
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.