OAK

CRF-Boosting: Constructing a Robust Online Hybrid Boosting Multiple Object Trackers Facilitated by CRF Learning

Metadata Downloads
Abstract
Due to the reasonably acceptable performance of state-of-the-art object detectors, tracking-by-detection is a standard strategy for visual multi-object tracking (MOT). In particular, online MOT is more demanding due to its diverse applications in time-critical situations. A main issue of realizing online MOT is how to associate noisy object detection results on a new frame with previously being tracked objects. In this work, we propose a multi-object tracker method called CRF-boosting which utilizes a hybrid data association method based on online hybrid boosting facilitated by a conditional random field (CRF) for establishing online MOT. For data association, learned CRF is used to generate reliable low-level tracklets and then these are used as the input of the hybrid boosting. To do so, while existing data association methods based on boosting algorithms have the necessity of training data having ground truth information to improve robustness, CRF-boosting ensures sufficient robustness without such information due to the synergetic cascaded learning procedure. Further, a hierarchical feature association framework is adopted to further improve MOT accuracy. From experimental results on public datasets, we could conclude that the benefit of proposed hybrid approach compared to the other competitive MOT systems is noticeable.
Author(s)
Yang, EhwaGwak, JeonghwanJeon, Moongu
Issued Date
2017-03
Type
Article
DOI
10.3390/s17030617
URI
https://scholar.gist.ac.kr/handle/local/13821
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
Sensors, v.17, no.3, pp.1 - 18
ISSN
1424-8220
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.