OAK

Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data

Metadata Downloads
Abstract
Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds (VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the SENEX campaign over the southeast US in summer 2013 to better understand the CHOCHO time-dependent yield from isoprene oxidation, its dependence on nitrogen oxides (NOx equivalent to NO + NO2), the behavior of the CHOCHO-HCHO relationship, the quality of OMI CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOS-Chem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NOx conditions following the isomerization of the isoprene peroxy radical (ISOPO2). The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NOx conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt CHOCHO production under low-NOx conditions apparent in the SENEX data.
Author(s)
Miller, Christopher ChanJacob, Daniel J.Marais, Eloise A.Yu, KarenTravis, Katherine R.Kim, Patrick S.Fisher, Jenny A.Zhu, LeiWolfe, Glenn M.Hanisco, Thomas F.Keutsch, Frank N.Kaiser, JenniferMin, Kyung-EunBrown, Steven S.Washenfelder, Rebecca A.Abad, Gonzalo GonzalezChance, Kelly
Issued Date
2017-07
Type
Article
DOI
10.5194/acp-17-8725-2017
URI
https://scholar.gist.ac.kr/handle/local/13695
Publisher
European Geophysical Society
Citation
Atmospheric Chemistry and Physics, v.17, no.14, pp.8725 - 8738
ISSN
1680-7316
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.