Control of porphyrin interactions via structural changes of a peptoid scaffold
- Abstract
- Nature utilizes optimally organized pigments in light-harvesting complexes. To mimic the natural photosynthetic proteins, effective control over inter-pigment interactions is necessary to attain the desired photophysical properties. Previously, we developed porphyrin-peptoid conjugates (PPCamide) and displayed two porphyrins at defined positions on an a-helical peptoid using a flexible n-butyl linker. Herein, we synthesized new porphyrin-peptoid conjugates (PPCC-C), where porphyrins are conjugated through a rigid C-C linkage to the helical peptoid via the Suzuki-Miyaura cross-coupling reaction. With PPCC-C, we studied the effects of backbone conformation, inter-porphyrin distance, and the linker flexibility on porphyrin interactions. When the rigid C-C linkage was used, conformational homogeneity of the PPC increased, providing more effective intramolecular excitonic couplings between the porphyrins; however, the intermolecular porphyrin J-aggregation decreased. In PPCC-C with a nonameric peptoid backbone, the formation of a threaded loop conformation was observed, which could be switched back to a helical conformation by N-terminal acetylation or by the addition of a protic solvent. This threaded loop-to-helix conversion restored the intramolecular porphyrin interactions. Our results suggest that PPCs represent an excellent system for control over porphyrin interactions and therefore are useful as a model system to elucidate pigment interactions in nature or as a molecular construct with switchable photophysical properties.
- Author(s)
- Yang, Woojin; Kang, Boyeong; Voelz, Vincent A.; Seo, Jiwon
- Issued Date
- 2017-12
- Type
- Article
- DOI
- 10.1039/c7ob02398g
- URI
- https://scholar.gist.ac.kr/handle/local/13485
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.