OAK

Predicting the Absorption Potential of Chemical Compounds Through a Deep Learning Approach

Metadata Downloads
Abstract
The human colorectal carcinoma cell line (Caco-2) is a commonly used in-vitro test that predicts the absorption potential of orally administered drugs. In-silico prediction methods, based on the Caco-2 assay data, may increase the effectiveness of the high-throughput screening of new drug candidates. However, previously developed in-silico models that predict the Caco-2 cellular permeability of chemical compounds use handcrafted features that may be dataset-specific and induce over-fitting problems. Deep Neural Network (DNN) generates high-level features based on non-linear transformations for raw features, which provides high discriminant power and, therefore, creates a good generalized model. We present a DNN-based binary Caco-2 permeability classifier. Our model was constructed based on 663 chemical compounds with in-vitro Caco-2 apparent permeability data. Two hundred nine molecular descriptors are used for generating the high-level features during DNN model generation. Dropout regularization is applied to solve the over-fitting problem and the non-linear activation. The Rectified Linear Unit (ReLU) is adopted to reduce the vanishing gradient problem. The results demonstrate that the high-level features generated by the DNN are more robust than handcrafted features for predicting the cellular permeability of structurally diverse chemical compounds in Caco-2 cell lines.
Author(s)
Shin, MoonshikJang, DonjinNam, HojungLee, Kwang HyungLee, Doheon
Issued Date
2018-03
Type
Article
DOI
10.1109/TCBB.2016.2535233
URI
https://scholar.gist.ac.kr/handle/local/13351
Publisher
IEEE Computer Society
Citation
IEEE/ACM Transactions on Computational Biology and Bioinformatics, v.15, no.2, pp.432 - 440
ISSN
1545-5963
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.