Deep Neural Network 기반 프로야구 일일 관중 수 예측: 광주-기아 챔피언스 필드를 중심으로
- Alternative Title
- Deep Neural Network Based Prediction of Daily Spectators for Korean Baseball League : Focused on Gwangju-KIA Champions Field
- Abstract
- 본 연구는 Deep Neural Network(DNN)을 이용하여 광주-기아 챔피언스 필드의 일일 관중 수를 예측함으로써 이를 통해 구단과 관련기업의 마케팅 자료제공 및 구장 내 부대시설의 재고관리에 자료로 쓰임을 목적으로 수행 되었다. 본 연구에서는 Artificial Neural Network(ANN)의 종류인 DNN 모델을 이용하였으며 DNN 모델의 과적합을 막기 위해 Dropout 과 Batch normalization 적용한 모델을 바탕으로 총 4종류를 설계하였다. 각각 10개의 DNN을 만들어 예측값의 Root Mean Square Error(RMSE)와 Mean Absolute Percentage Error(MAPE)의 평균값을 낸 모델과 예측값의 평균으로RMSE와 MAPE를 평가한 Ensemble 모델을 만들었다. 모델의 학습 데이터는 2008년부터 2017년까지의 관중 수 데이터를수집하여 수집된 데이터의 80%를 무작위로 선정하였으며, 나머지 20%는 테스트 데이터로 사용하였다. 총 100회의 데이터선정, 모델구성 그리고 학습 및 예측을 한 결과 Ensemble 모델은 DNN 모델의 예측력이 가장 우수하게 나왔으며, 다중선형회귀 모델 대비 RMSE는 15.17%, MAPE는 14.34% 높은 예측력을 보이고 있다.
- Author(s)
- 박동주; 김병우; 정영선; 안창욱
- Issued Date
- 2018-03
- Type
- Article
- DOI
- 10.30693/SMJ.2018.7.1.16
- URI
- https://scholar.gist.ac.kr/handle/local/13348
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.