OAK

Speckle Reduction on Ultrasound Liver Images Based on a Sparse Representation over a Learned Dictionary

Metadata Downloads
Abstract
Ultrasound images are corrupted with multiplicative noise known as speckle, which reduces the effectiveness of image processing and hampers interpretation. This paper proposes a multiplicative speckle suppression technique for ultrasound liver images, based on a new signal reconstruction model known as sparse representation (SR) over dictionary learning. In the proposed technique, the non-uniform multiplicative signal is first converted into additive noise using an enhanced homomorphic filter. This is followed by pixel-based total variation (TV) regularization and patch-based SR over a dictionary trained using K-singular value decomposition (KSVD). Finally, the split Bregman algorithm is used to solve the optimization problem and estimate the de-speckled image. The simulations performed on both synthetic and clinical ultrasound images for speckle reduction, the proposed technique achieved peak signal-to-noise ratios of 35.537 dB for the dictionary trained on noisy image patches and 35.033 dB for the dictionary trained using a set of reference ultrasound image patches. Further, the evaluation results show that the proposed method performs better than other state-of-the-art denoising algorithms in terms of both peak signal-to-noise ratio and subjective visual quality assessment.
Author(s)
Jabarulla, Mohamed YaseenLee, Heung-No
Issued Date
2018-05
Type
Article
DOI
10.3390/app8060903
URI
https://scholar.gist.ac.kr/handle/local/13264
Publisher
MDPI
Citation
Applied Sciences-basel, v.8, no.6
ISSN
2076-3417
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.