OAK

Fecal pollution: new trends and challenges in microbial source tracking using next-generation sequencing

Metadata Downloads
Abstract
In this minireview, we expand upon traditional microbial source tracking (MST) methods by discussing two recently developed, next-generation-sequencing (NGS)-based MST approaches to identify sources of fecal pollution in recreational waters. One method defines operational taxonomic units (OTUs) that are specific to a fecal source, e.g., humans and animals or shared among multiple fecal sources to determine the magnitude and likely source association of fecal pollution. The other method uses SourceTracker, a program using a Bayesian algorithm, to determine which OTUs have contributed to an environmental community based on the composition of microbial communities in multiple fecal sources. Contemporary NGS-based MST tools offer a promising avenue to rapidly characterize fecal source contributions for water monitoring and remediation efforts at a broader and more efficient scale than previous molecular MST methods. However, both NGS methods require optimized sequence processing methodologies (e.g. quality filtering and clustering algorithms) and are influenced by primer selection for amplicon sequencing. Therefore, care must be taken when extrapolating data or combining datasets. Furthermore, traditional limitations of library-dependent MST methods, including differential decay of source material in environmental waters and spatiotemporal variation in source communities, remain to be fully understood. Nevertheless, increasing use of these methods, as well as expanding fecal taxon libraries representative of source communities, will help improve the accuracy of these methods and provide promising tools for future MST investigations.
Author(s)
Unno, TatsuyaStaley, ChristopherBrown, Clairessa M.Han, DukkiSadowsky, Michael J.Hur, Hor-Gil
Issued Date
2018-05
Type
Article
DOI
10.1111/1462-2920.14281
URI
https://scholar.gist.ac.kr/handle/local/13257
Publisher
Society for Applied Microbiology and John Wiley & Sons Ltd
Citation
Environmental Microbiology, v.20, no.9, pp.3132 - 3140
ISSN
1462-2912
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.