OAK

A wavelength-convertible quantum memory: Controlled echo

Metadata Downloads
Abstract
Quantum coherence control is reinvestigated for a new physical insight in quantum nonlinear optics and applied for a wavelength-convertible quantum memory in a solid ensemble whose spin states are inhomogeneously broadened. Unlike typical atomic media whose spin decays are homogeneous, a spin inhomogeneously broadened solid ensemble requires a counter-intuitive quantum coherence control to avoid spontaneous emission-caused quantum noises. Such a quantum coherence control in a solid ensemble satisfying both near perfect retrieval efficiency and ultralong photon storage offers a solid framework to quantum repeaters, scalable qubit generations, quantum cryptography, and highly sensitive magnetometry. Here, the basic physics of the counter-intuitive quantum coherence control is presented not only for a fundamental understanding of collective ensemble phase control but also for a coherence conversion mechanism between optical and spin states involving Raman rephasing.
Author(s)
Ham, Byoung S.
Issued Date
2018-07
Type
Article
DOI
10.1038/s41598-018-28776-1
URI
https://scholar.gist.ac.kr/handle/local/13196
Publisher
Nature Publishing Group
Citation
Scientific Reports, v.8, no.1, pp.1 - 8
ISSN
2045-2322
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.