OAK

Pd core-shell alloy catalysts for high-temperature polymer electrolyte membrane fuel cells: Effect of the core composition on the activity towards oxygen reduction reactions

Metadata Downloads
Abstract
Pd-based core-shell alloy-supported catalysts were prepared sequentially via a microwave-assisted polyol method and galvanic replacement. To investigate the effect of the core composition on the catalytic activity of such catalysts, three different Pd alloy cores (PdNi, PdCu, and PdNiCu) were prepared on carbon supports using a polyol method. Then, Pd and Ir were introduced simultaneously to form shells on the Pd alloy cores by galvanic replacement in aqueous solution, thereby producing catalysts designated as PdNi@PdIr/C, PdCu@PdIr/C, and PdNiCu@PdIr/C. X-ray diffraction revealed that all three catalysts exhibited the face-centered cubic structure of Pd without the presence of individual phases for Ni, Cu, and Ir. The core-shell structure of the Pd-based alloy nanoparticles on the carbon support was verified by the electron energy loss spectroscopy line profile of a 25 nm nanoparticle of PdNiCu@PdIr/C. Among the three Pd-based core-shell catalysts, the highest electrochemical surface area and oxygen reduction reaction (ORR) activity was observed for PdNiCu@PdIr/C. In addition, the membrane electrode assembly employing the PdNiCu@PdIr/C catalyst displayed a significantly improved voltage compared to the other two catalysts under high-temperature polymer electrolyte membrane fuel cell conditions at 150 °C. Single-cell durability tests conducted to measure the voltage change at a constant current density of 0.2 A cm−2 showed a decay ratio of 12.3 μV h−1. These results suggest that the composition of the core in core-shell nanoparticles has an important influence on both the electronic properties in the Pd alloy core and compressive lattice strain on the PdIr shell. Control of these synergistic effects provides a new approach for developing catalysts with high ORR activity. © 2018 Elsevier B.V.
Author(s)
You, D.J.Kim, DohyungDe Lile, J.R.Li, C.Lee, S.G.Kim, J.M.Pak, Chanho
Issued Date
2018-07
Type
Article
DOI
10.1016/j.apcata.2018.06.018
URI
https://scholar.gist.ac.kr/handle/local/13184
Publisher
Elsevier B.V.
Citation
Applied Catalysis A: General, v.562, pp.250 - 257
ISSN
0926-860X
Appears in Collections:
Department of Chemistry > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.