OAK

비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법

Metadata Downloads
Alternative Title
An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model
Abstract
본 논문에서는 터널 환경에서 비음수 텐서분해와 가우시안 혼합을 갖는 은닉 마코프 모델을 사용한 사고 검지 시스템을 제안한다. 대부분의 터널 내 환경은 내재된 환경으로 인한 작은 사고들이 발생한다. 특히 터널 내에서 사고가 발생할 시, 2차, 3차 사고가 발생되어 큰 재해로 발전할 가능성이 높다. 주로 시각기반의 사고 검지 기법들이 많이 제안되어왔으나, 시야각 등의 문제로 오검지가 발생하는 단점이 존재한다. 이러한 시각기반의 검지 기법을 보완하기 위해 본 논문에 제안된 기법은 터널 환경에서의 음향사고 검출의 정확도 개선을 위해 비음수 텐서분해와 가우시안 혼합모델(Gaussian mixture model, GMM) 기반의 은닉 마코프 모델(hidden Markov model, HMM)을 이용한다. 제안된 방법은 비음수 텐서 분해 기법에 활용되는 사고음향 모델과 잡음모델을 사용하여 사고음을 분리하고, 분리된 사고음을 기반으로 기 훈련된 GMM-HMM 기반의 음향모델을 기반으로 우도비 검증을 수행하여 사고 검지를 수행한다. 제안된 방법의 검지 정확도를 평가하기 위해 터널 내 환경잡음과 사고음을 합성하여 생성한 데이터를 생성하였고, 높은 정확도를 얻을 수 있었다.
Author(s)
김남균전광명김홍국
Issued Date
2018-09
Type
Article
DOI
10.21742/AJMAHS.2018.09.66
URI
https://scholar.gist.ac.kr/handle/local/13089
Publisher
사단법인 인문사회과학기술융합학회
Citation
예술인문사회 융합 멀티미디어 논문지, v.8, no.9, pp.265 - 273
ISSN
2383-5281
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.