OAK

Small molecule semiconductors for organic photovoltaics: a truncation approach

Metadata Downloads
Abstract
Solution-processable small molecule (SM) organic semiconductors for organic photovoltaics have been in the spotlight for several years. In particular, SM semiconductors have been developed in an attempt to control their film morphology, study their intermolecular interactions, and synthesize new electron donor and electron acceptor subunits. SMs have many advantages over polymers including well-defined molecular structures, monodispersity, and no batch-to-batch dependence. Although SM semiconductors can be designed by truncation from polymers, such examples have rarely been reported. Herein we designed SM semiconductors by truncating a representative polymer, Poly[4-(4,8-bis((2-hexyldecyl)oxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-alt-benzo[c][1,2,5]thiadiazole] (PBDTBT). Based on density functional theory (DFT) calculations, 2,1,3-benzothiadiazole (BT) was chosen as an electron acceptor subunit instead of thieno[3,4-c]pyrrole-4,6-dione (TPD). The SM semiconductors were end-capped with pyridine derivatives. Thermal, optical and electrochemical properties of these materials were examined to confirm the degradation temperature, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energy levels, and the band gaps. In particular, the benzyloxyl pyridine-capped semiconductor (SM1) exhibited power conversion efficiency (PCE) of 1.92% which is higher than those shown by the corresponding polymer PBDTBT (0.90% and 1.71%). © 2018
Author(s)
Kyeong, M.Park, Y.Gu, A.Kim, Hee JooHong, Sukwon
Issued Date
2018-11
Type
Article
DOI
10.1016/j.synthmet.2018.08.004
URI
https://scholar.gist.ac.kr/handle/local/13028
Publisher
Elsevier BV
Citation
Synthetic Metals, v.245, pp.10 - 17
ISSN
0379-6779
Appears in Collections:
Department of Chemistry > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.