Templated synthesis of cubic crystalline single networks having large open-space lattices by polymer cubosomes
- Abstract
- The synthesis of biophotonic crystals of insects, cubic crystalline single networks of chitin having large open-space lattices, requires the selective diffusion of monomers into only one of two non-intersecting water-channel networks embedded within the template, ordered smooth endoplasmic reticulum (OSER). Here we show that the topology of the circumferential bilayer of polymer cubosomes (PCs)-polymeric analogues to lipid cubic membranes and complex biological membranes-differentiate between two non-intersecting pore networks embedded in the cubic mesophase by sealing one network at the interface. Consequently, single networks having large lattice parameters (> 240 nm) are synthesized by cross-linking of inorganic precursors within the open network of the PCs. Our results pave the way to create triply periodic structures of open-space lattices as photonic crystals and meta-materials without relying on complex multi-step fabrication. Our results also suggest a possible answer for how biophotonic single cubic networks are created, using OSER as templates.
- Author(s)
- La, Yunju; Song, Jeongeun; Jeong, Moon Gon; Cho, Arah; Jin, Seon-Mi; Lee, Eunji; Kim, Kyoung Taek
- Issued Date
- 2018-12
- Type
- Article
- DOI
- 10.1038/s41467-018-07793-8
- URI
- https://scholar.gist.ac.kr/handle/local/12972
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.