OAK

The fractional weak discrepancy of (M, 2)-free posets

Metadata Downloads
Abstract
For a finite poset $P = (X, \preceq)$ the {\it fractional weak discrepancy} of $P$, denoted $wd_F(P)$, is the minimum value $t$ for which there is a function $f: X \longrightarrow \mathbb{R}$ satisfying (1) $f(x) + 1 \le f(y)$ whenever $x \prec y$ and (2) $|f(x) - f(y)| \le t$ whenever $x \| y$. In this paper, we determine the range of the fractional weak discrepancy of $(M, 2)$-free posets for $M \ge 5$, which is a problem asked in \cite{sst3}. More precisely, we showed that (1) the range of the fractional weak discrepancy of $(M, 2)$-free interval orders is $W = \{ \frac{r}{r+1} \colon r \in \mathbb{N} \cup \{ 0 \} \} \cup \{ t \in \mathbb{Q} \colon 1 \le t < M - 3 \}$ and (2) the range of the fractional weak discrepancy of $(M, 2)$-free non-interval orders is $\{ t \in \mathbb{Q} \colon 1 \le t < M - 3 \}$. The result is a generalization of a well-known result for semiorders and the main result for split semiorders of \cite{sst3} since the family of semiorders is the family of $(4, 2)$-free posets.
Author(s)
Choi, Jeong-Ok
Issued Date
2019-01
Type
Article
DOI
10.4134/BKMS.b170657
URI
https://scholar.gist.ac.kr/handle/local/12930
Publisher
대한수학회
Citation
Bulletin of the KMS, v.56, no.1, pp.1 - 12
ISSN
1015-8634
Appears in Collections:
Department of Mathematical Sciences > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.