OAK

Analysis and Impact Evaluation of Missing Data Imputation in Day-ahead PV Generation Forecasting

Metadata Downloads
Abstract
Over the past decade, PV power plants have increasingly contributed to power generation. However, PV power generation widely varies due to environmental factors; thus, the accurate forecasting of PV generation becomes essential. Meanwhile, weather data for environmental factors include many missing values; for example, when we estimated the missing values in the precipitation data of the Korea Meteorological Agency, they amounted to similar to 16% from 2015-2016, and further, 19% of the weather data were missing for 2017. Such missing values deteriorate the PV power generation prediction performance, and they need to be eliminated by filling in other values. Here, we explore the impact of missing data imputation methods that can be used to replace these missing values. We apply four missing data imputation methods to the training data and test data of the prediction model based on support vector regression. When the k-nearest neighbors method is applied to the test data, the prediction performance yields results closest to those for the original data with no missing values, and the prediction model's performance is stable even when the missing data rate increases. Therefore, we conclude that the most appropriate missing data imputation for application to PV forecasting is the KNN method.
Author(s)
Kim, TaeyoungKo, WoongKim, Jinho
Issued Date
2019-01
Type
Article
DOI
10.3390/app9010204
URI
https://scholar.gist.ac.kr/handle/local/12929
Publisher
MDPI
Citation
Applied Sciences-basel, v.9, no.1
ISSN
2076-3417
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.