OAK

Investigation of thermodynamic and kinetic effects of cyclopentane derivatives on CO2 hydrates for potential application to seawater desalination

Metadata Downloads
Abstract
In recent decades, gas hydrates have received significant attention due to their potential roles in energy and environmental applications. The formation of gas hydrates involves a process to assemble variously shaped frameworks made of hydrogen bonded networks of H2O molecules, and thus ionic species, such as Na+, K+, Mg2+, Ca2+, Cl-, SO42-, etc., can be excluded from the solid gas hydrate phase. Therefore, gas hydrates can potentially be utilized in desalination technology. For potential application to a hydrate-based desalination (HBD) process, three cyclic compounds, cyclopentane (CP), cyclopentanone (CP-one), and cyclopentanol (CP-ol), were selected, focusing on a comparison of thermodynamic and kinetic effects. From the thermodynamic view, the study confirmed that the hydrate formation was favorable in the order of CP, CP-one, and CP-ol in the presence of CH4 or CO2. For the kinetic comparison, however, CP-ol and CP-one showed a relatively shorter induction time than CP. The conversion yield of CO2 hydrate of CP-one was more than double those of CP and CP-ol hydrates, which is ascribed to the unique hydration of the ketone during the hydrate formation. The findings suggest that CP-one could be a promising candidate for the HBD process.
Author(s)
Hong, SujinMoon, SeokyoonLee, YunseokLee, SeunginPark, Youngjune
Issued Date
2019-05
Type
Article
DOI
10.1016/j.cej.2019.01.108
URI
https://scholar.gist.ac.kr/handle/local/12754
Publisher
Elsevier BV
Citation
Chemical Engineering Journal, v.363, pp.99 - 106
ISSN
1385-8947
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.