OAK

Co-delivery of therapeutic protein and catalase-mimic nanoparticle using a biocompatible nanocarrier for enhanced therapeutic effect

Metadata Downloads
Abstract
Therapeutic proteins are indispensable in the treatment of various human diseases. Despite the many benefits of therapeutic proteins, they also exhibit diverse side effects. Therefore, reducing unwanted side effects of therapeutic proteins as well as enhancing their therapeutic efficacy are very important in developing therapeutic proteins. Urate oxidase (UOX) is a therapeutic enzyme that catalyzes the conversion of uric acid (UA) into a soluble metabolite, and it is used clinically for the treatment of hyperuricemia. Since UA degradation by UOX generates H2O2 (a cytotoxic side product), UOX was co-delivered with catalase-mimic nanoparticles (AuNPs) using biocompatible pluronic-based nanocarriers (NCs) to effectively reduce H2O2-associated toxicity in cultured cells and to enhance UA degradation efficiency in vivo. Simple temperature-dependent size changes of NCs allowed co-encapsulation of both UOX and AuNPs at a high loading efficiency without compromising critical properties, resulting in efficient modulation of a mixing ratio of UOX and AuNPs encapsulated in NCs. Co-localizing UOX and AuNPs in the NCs led to enhanced UA degradation and H2O2 removal in vitro, leading to a great reduction in H2O2-associated cytotoxicity compared with UOX alone or a free mixture of UOX and AuNPs. Furthermore, we demonstrated that co-delivery of UOX and AuNPs using NCs significantly improves in vivo UA degradation compared to simple co-injection of free UOX and AuNPs. More broadly, we showed that biocompatible pluronic-based nanocarriers can be used to deliver a target therapeutic protein along with its toxicity-eliminating agent in order to reduce side effects and enhance efficacy. © 2019 Elsevier B.V.
Author(s)
Seoungkyun KimManse KimSecheon JungKiyoon KwonJunyong ParkSukhwan Kim,Inchan KwonGiyoong Tae
Issued Date
2019-09
Type
Article
DOI
10.1016/j.jconrel.2019.07.038
URI
https://scholar.gist.ac.kr/handle/local/12556
Publisher
Elsevier B.V.
Citation
Journal of Controlled Release, v.309, pp.181 - 189
ISSN
0168-3659
Appears in Collections:
Department of Materials Science and Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.