OAK

Prediction of Alzheimer's disease using blood gene expression data

Metadata Downloads
Abstract
Identification of AD (Alzheimer's disease)-related genes obtained from blood samples is crucial for early AD diagnosis. We used three public datasets, ADNI, AddNeuroMed1 (ANM1), and ANM2, for this study. Five feature selection methods and five classifiers were used to curate AD-related genes and discriminate AD patients, respectively. In the internal validation (five-fold cross-validation within each dataset), the best average values of the area under the curve (AUC) were 0.657, 0.874, and 0.804 for ADNI, ANMI, and ANM2, respectively. In the external validation (training and test sets from different datasets), the best AUCs were 0.697 (training: ADNI to testing: ANM1), 0.764 (ADNI to ANM2), 0.619 (ANM1 to ADNI), 0.79 (ANM1 to ANM2), 0.655 (ANM2 to ADNI), and 0.859 (ANM2 to ANM1), respectively. These results suggest that although the classification performance of ADNI is relatively lower than that of ANM1 and ANM2, classifiers trained using blood gene expression can be used to classify AD for other data sets. In addition, pathway analysis showed that AD-related genes were enriched with inflammation, mitochondria, and Wnt signaling pathways. Our study suggests that blood gene expression data are useful in predicting the AD classification.
Author(s)
Lee, TaesicLee, Hyunju
Issued Date
2020-02
Type
Article
DOI
10.1038/s41598-020-60595-1
URI
https://scholar.gist.ac.kr/handle/local/12324
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.10, no.1
ISSN
2045-2322
Appears in Collections:
Department of AI Convergence > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.