OAK

Linear-T resistivity from low to high temperature: axion-dilaton theories

Metadata Downloads
Abstract
The linear-T resistivity is one of the hallmarks of various strange metals regardless of their microscopic details. Towards understanding this universal property, the holographic method or gauge/gravity duality has made much progress. Most holographic models have focused on the low temperature limit, where the linear-T resistivity has been explained by the infrared geometry. We extend this analysis to high temperature and identify the conditions for a robust linear-T resistivity up to high temperature. This extension is important because, in experiment, the linear-T resistivity is observed in a large range of temperatures, up to room temperature. In the axion-dilaton theories we find that, to have a robust linear-T resistivity, the strong momentum relaxation is a necessary condition, which agrees with the previous results for the Guber-Rocha model. However, it is not sufficient in the sense that, among large range of parameters giving a linear-T resistivity in low temperature limit, only very limited parameters can support the linear-T resistivity up to high temperature even in strong momentum relaxation. We also show that the incoherent term in the general holographic conductivity formula or the coupling between the dilaton and Maxwell term is responsible for a robust linear-T resistivity up to high temperature. © 2020, The Author(s).
Author(s)
Ahn Y.Jeong H.-S.Ahn D.Kim K.-Y.
Issued Date
2020-04
Type
Article
DOI
10.1007/JHEP04(2020)153
URI
https://scholar.gist.ac.kr/handle/local/12243
Publisher
Springer
Citation
Journal of High Energy Physics, v.2020, no.4
ISSN
1126-6708
Appears in Collections:
Department of Physics and Photon Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.