OAK

Engineering core-shell structures of magnetic ferrite nanoparticles for high hyperthermia performance

Metadata Downloads
Author(s)
Darwish, Mohamed S.A.Kim, HohyeonLee, HwangjaeRyu, ChiseonLee, Jae YoungYoon, Jungwon
Type
Article
Citation
Nanomaterials, v.10, no.5, pp.991
Issued Date
2020-05
Abstract
Magnetic ferrite nanoparticles (MFNs) with high heating efficiency are highly desirable for hyperthermia applications. As conventional MFNs usually show low heating efficiency with a lower specific loss power (SLP), extensive efforts to enhance the SLP of MFNs have been made by varying the particle compositions, sizes, and structures. In this study, we attempted to increase the SLP values by creating core-shell structures of MFNs. Accordingly, first we synthesized three different types of core ferrite nanoparticle of magnetite (mag), cobalt ferrite (cf) and zinc cobalt ferrite (zcf). Secondly, we synthesized eight bi-magnetic core-shell structured MFNs; Fe3O4@CoFe2O4 (mag@cf1, mag@cf2), CoFe2O4@Fe3O4 (cf@mag1, cf@mag2), Fe3O4@ZnCoFe2O4 (mag@zcf1, mag@zcf2), and ZnCoFe2O4@Fe3O4 (zcf@mag1, zcf@mag2), using a modified controlled co-precipitation process. SLP values of the prepared core-shell MFNs were investigated with respect to their compositions and core/shell dimensions while varying the applied magnetic field strength. Hyperthermia properties of the prepared core-shell MFNs were further compared to commercial magnetic nanoparticles under the safe limits of magnetic field parameters (<5 × 109 A/(m·s)). As a result, the highest SLP value (379.2 W/gmetal) was obtained for mag@zcf1, with a magnetic field strength of 50 kA/m and frequency of 97 kHz. On the other hand, the lowest SLP value (1.7 W/gmetal) was obtained for cf@mag1, with a magnetic field strength of 40 kA/m and frequency of 97 kHz. We also found that magnetic properties and thickness of the shell play critical roles in heating efficiency and hyperthermia performance. In conclusion, we successfully enhanced the SLP of MFNs by engineering their compositions and dimensions. © 2020 by the authors.
Publisher
MDPI AG
ISSN
2079-4991
DOI
10.3390/nano10050991
URI
https://scholar.gist.ac.kr/handle/local/12182
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.