OAK

Synthesis of Therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients

Metadata Downloads
Author(s)
Lee, RyeriKim, Joong BaeQin, CaiyanLee, HeonLee, Bong JaeJung, Gun Young
Type
Article
Citation
Solar Energy Materials and Solar Cells, v.209
Issued Date
2020-06
Abstract
Direct-absorption solar collectors (DASCs) that employ plasmonic nanofluids with engineered optical properties have drawn much attention for solar thermal applications. One of the major issues limiting further development of DASCs is the long-term dispersion of nanoparticles within the plasmonic nanofluids, which should be sustainable at high-temperature conditions. In this research, we propose surface-modified metal@SiO2 core/shell nanoparticles (CSNPs) to improve the dispersion stability and tune the absorption coefficient of nanofluids. The Au@SiO2 and Ag@SiO2 CSNPs are synthesized using a low-temperature two-step solution process. The plasmonic nanofluids with the synthesized metal@SiO2 CSNPs exhibit excellent dispersion stability of 93.7% for Au@SiO2 and 100% for Ag@SiO2 in 6 months without using any surfactants, and they also present a good thermal stability after thermal exposure at 150 ∘C for an hour. The absorption and scattering coefficients of a plasmonic nanofluid should be known precisely to properly analyze its photothermal conversion. Here, we also develop a new measurement system to separately determine the absorption and scattering coefficients of nanofluid. The Au@SiO2 CSNPs-dispersed nanofluid is observed to exhibit an extremely low scattering albedo (i.e., ω=0.011) in comparison with that of the Ag@SiO2 CSNPs-dispersed nanofluid (ω=0.3). © 2020 Elsevier B.V.
Publisher
Elsevier B.V.
ISSN
0927-0248
DOI
10.1016/j.solmat.2020.110442
URI
https://scholar.gist.ac.kr/handle/local/12158
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.