OAK

Omni-Directional Protected Nanofiber Membranes by Surface Segregation of PDMS-Terminated Triblock Copolymer for High-Efficiency Oil/Water Emulsion Separation

Metadata Downloads
Abstract
An excellent antifouling membrane with high permeate flux is required for oil/water emulsion separation due to ever-increasing oily industrial wastewater. Thus, an intriguing integration of the Omni-directional protected porous membrane that combines a high porosity nanofiber membrane with a surface segregation mechanism is established for the first time. By applying polydimethylsiloxane(PDMS)-terminated triblock copolymer, the enrichment of the hydrophilic poly(ethylene oxide) (PEO) segment and the nonpolar PDMS segment on the surface of the nanofiber endowed the nanofiber membrane with underwater oleophobicity and low oil adhesion force, exhibiting oil resistance as well as oil release property. An ultrahigh permeate flux of similar to 7115 L m(-2) h(-1) with a separation efficiency of similar to 97.88% is achieved under the driving force of gravity (similar to 0.9 kPa), which is the highest permeate flux ever reported under similar conditions. Moreover, the surface segregation nanofiber membrane shows excellent reusability and ultrahigh permeate flux with the assistance of stirring in a long-term test, revealing the promising performances for the further particular application of oily wastewater.
Author(s)
Liang, YejinKim, SoyoungYang, EunmokChoi, Heechul
Issued Date
2020-06
Type
Article
DOI
10.1021/acsami.0c05559
URI
https://scholar.gist.ac.kr/handle/local/12132
Publisher
AMER CHEMICAL SOC
Citation
ACS APPLIED MATERIALS & INTERFACES, v.12, no.22, pp.25324 - 25333
ISSN
1944-8244
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.