유전 프로그래밍을 활용한 제조 빅데이터 분석 방법 연구
- Alternative Title
- Genetic Programming based Manufacutring Big Data Analytics
- Abstract
- 현재 제조 분야 빅데이터 분석을 위하여 black-box 기반 기계 학습 알고리즘을 활용하고 있다. 해당 알고리즘은 높은 분석 정합성 가지는 장점이 있지만, 분석 결과에 대한 해석이 어렵다는 단점이 있다. 그러나 제조업에서는 분석 알고리즘은 제조 공정 원리 기반 해석을 통하여 결과의 근거 및 도출 타당성에 대한 검증이 중요하다. 이러한 기계 학습 알고리즘의 결과 설명력 한계를 극복하기 위하여 유전 프로그래밍을 활용한 제조 빅데이터 분석 방법을 제안한다. 본 알고리즘은 생물학적 진화유전 프로그래밍 알고리즘은 생물학적 진화를 모방한 진화 연산 (선택, 교배, 돌연변이) 반복하면서 최적의 해를 찾아간다. 그리고 해는 수학적 기호를 활용하여 변수 간의 관계로 나타나며, 가장 높은 설명력을 가지는 해가 최종적으로 선택된다. 이를 통하여 입력 및 출력 변수 관계 수식화를 통한 결과를 도출하므로 직관적인 제조 매카니즘에 대한 해석이 가능하며 또한 수식으로 나타낸 변수간의 관계 기반으로 기존 해석이 불가한 제조 원리 도출도 가능하다. 제안 기법은 대표적인 기계 학습 알고리즘과 성능을 비교 분석 결과 동등 또는 우수한 성능을 보였다. 향후 해당 기법을 통하여 다양한 제조 분야 활용 가능성을 검증하였다.
- Author(s)
- 오상헌; 안창욱
- Issued Date
- 2020-09
- Type
- Article
- DOI
- 10.30693/SMJ.2020.9.3.31
- URI
- https://scholar.gist.ac.kr/handle/local/11978
- 공개 및 라이선스
-
- 파일 목록
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.