OAK

Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide

Metadata Downloads
Author(s)
Lee, HyeryeongLee, Yoo SeokReginald, Stacy SimaiBaek, SeungwooLee, Eun MiChoi, In-GeolChang, In Seop
Type
Article
Citation
BIOSENSORS & BIOELECTRONICS, v.165
Issued Date
2020-10
Abstract
In the present work, direct electron transfer (DET) based biosensing system for the determination of glucose has been fabricated by utilizing gold binding peptide (GBP) fused flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Burkholderia cepacia. The GBP fused FAD-GDH was immobilized on the working electrode surface of screen-printed electrode (SPE) which consists of gold working electrode, a silver pseudo-reference electrode and a platinum counter electrode, to develop the biosensing system with compact design and favorable sensing ability. The bioelectrochemical and mechanical properties of GBP fused FAD-GDH (GDH-GBP) immobilized SPE (GDH-GBP/Au) were investigated. Here, the binding affinity of GDH-GBP on Au surface, was highly increased after fusion of gold binding peptide and its uniform monolayer was formed on Au surface. In the cyclic voltammetry (CV), GDH-GBP/Au displayed significantly high oxidative peak currents corresponding to glucose oxidation which is almost c.a. 10-fold enhanced value compared with that from native GDH immobilized SPE (GDH/Au). As well, GDH-GBP/Au has shown 92.37% of current retention after successive potential scans. In the chronoamperometry, its steady-state catalytic current was monitored in various conditions. The dynamic range of GDH-GBP/Au was shown to be 3-30 mM at 30 degrees C and exhibits high selectivity toward glucose in whole human blood. Additionally, temperature dependency of GDH-GBP/Au on DET capability was also investigated at 30-70 degrees C. Considering this efficient and stable glucose sensing with simple and easy sensor fabrication, GDH-GBP based sensing platform can provide new insight for future biosensor in research fields that rely on DET.
Publisher
ELSEVIER ADVANCED TECHNOLOGY
ISSN
0956-5663
DOI
10.1016/j.bios.2020.112427
URI
https://scholar.gist.ac.kr/handle/local/11941
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.