OAK

Influence of 3D Morphology on the Performance of All-Polymer Solar Cells Processed by Environmentally Benign Non-Halogenated Solvents

Metadata Downloads
Abstract
Advancing the photovoltaic performance of all-polymer solar cells (APSCs) requires a comprehensive understanding of the dependence of the properties of photoactive blend films on the solvents used to process them. We have studied the correlation between the morphology of PTB7-Th:PNDI2OD-T2 blend films prepared using six different processing solvents. Three-dimensional (3D) transmission electron microscopy tomography (TEMT) revealed the influence of the 3D morphology of the PTB7-Th:PNDI2OD-T2 blend films on their photovoltaic performance. The high-performing toluene (TOL)- and o-xylene (XY)-processed blend films displayed power conversion efficiencies (PCEs) of ~4%, which contained nanoscopically networked fibrous PNDI2OD-T2 polymer domains. The films processed using the other solvents exhibited partly disconnected domains or unfavorable vertical phase separation. In addition, the use of N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), or N-methyl-2-pyrrolidone (NMP) as a solvent additive in XY solution resulted in a substantial improvement in the PCEs to 6.1%. This large enhancement was attributed to the formation of the better-interconnected narrower crystalline fibrillary structure of PNDI2OD-T2 chains with the aid of solvent additives, as clearly elucidated by 3D-TEMT imaging. This work highlights that APSCs processed from benign nonhalogenated solvents with appropriate additives can outperform APSCs processed from toxic halogenated solvents by affording a favorable blend morphology and that 3D TEMT imaging is a powerful and essential tool for characterizing the true morphology of photoactive layers. © 2020 Elsevier Ltd
Author(s)
Jung, HyeseungJung, A-RaJin, Seon-MiKim, SeahHeo, HyojungNguyen, Hoai Van T.Kim, Min JeAhn, PyeongkangKim, Myung HwaLee, YounguLee, Kyung-KooCho, Jeong HoLee, EunjiKim, BongsSoo
Issued Date
2020-11
Type
Article
DOI
10.1016/j.nanoen.2020.105106
URI
https://scholar.gist.ac.kr/handle/local/11902
Publisher
Elsevier BV
Citation
Nano Energy, v.77, pp.105106
ISSN
2211-2855
Appears in Collections:
Department of Materials Science and Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.