OAK

Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

Metadata Downloads
Abstract
As cloud-native computing is becoming the de-facto paradigm in the cloud field, Microservices Architecture has attracted attention from industries and researchers for agility and efficiency. Moreover, with the popularity of the IoT in the context of edge computing, cloud-native applications that utilize geographically-distributed multiple resources are emerging. In line with this trend, there is an increasing demand for microservices placement that selectively use optimal resources. However, optimal microservices placement is a significant challenge because microservices are dynamic and complex, depending on diversified workloads. Besides, generalizing workloads' characteristics consisting of complex microservices is realistically challenging. Thus, microservices deployment with mathematically structured algorithms based on simulation is less practical. As an alternative, a microservices placement framework is required that can reflect the characteristics of workloads derived from empirical profiling. Therefore, in this research work, we propose a refinement framework for profiling-based microservices placement to identify and respond to workload characteristics in a practical way. To achieve this goal, we perform profiling experiments with selected workloads to derive delicate resource requirements. Then, we perform microservices placement with a greedy-based heuristic algorithm that considers application performance by using resource requirements derived from the profiled results. Finally, we verify the proposed concept by comparing the experimental results that use our work and those that don't.
Author(s)
Han, JungsuHong, YujinKim, Jongwon
Issued Date
2020-11
Type
Article
DOI
10.1109/ACCESS.2020.3033019
URI
https://scholar.gist.ac.kr/handle/local/11892
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation
IEEE ACCESS, v.8, pp.192543 - 192556
ISSN
2169-3536
Appears in Collections:
Department of AI Convergence > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.