OAK

Comparison of five extraction methods for evaluating cadmium and zinc immobilization in soil

Metadata Downloads
Abstract
The remediation of soil contaminated with heavy metals is an ongoing environmental concern. Paddy soils contaminated with Cd and Zn were collected from around abandoned metals mines in Korea. Limestone and steel slag were mixed with the collected soil, as amendments for Cd and Zn immobilization. Sequential extraction, lettuce cultivation and five single extraction methods were carried out to assess the effects on Cd and Zn immobilization using amendments. The exchangeable fraction of Cd and Zn was decreased and Fe–Mn oxides fraction increased by stabilization using amendments. In addition, the accumulation of Cd and Zn in lettuce decreased in treated soil and indicated the Cd and Zn immobilization effect in soil by the amendments. The extractable Cd and Zn by CaCl2 and Mehlich-3 in the untreated soils were higher than that of treated soils, whereas Cd and Zn extraction by ethylenediaminetetraacetic acid (EDTA), diethylene tetramine penta-acetic acid (DTPA) and toxicity characteristic leaching procedure (TCLP) has a small or no difference between the untreated and treated soils. The extraction results by CaCl2 and Mehlich-3 methods present reasonable results for Cd and Zn immobilization in soil than EDTA, DTPA and TCLP methods. Therefore, the choice of appropriate extraction method is very important when there is the assessment of Cd and Zn immobilization efficiency. © 2020, Springer Nature B.V.
Author(s)
Han, H.-J.Lee, J.-U.Ko, M.-S.Kim, K.-W.
Issued Date
2020-12
Type
Article
DOI
10.1007/s10653-020-00650-y
URI
https://scholar.gist.ac.kr/handle/local/11844
Publisher
Springer
Citation
Environmental Geochemistry and Health, v.42, no.12, pp.4203 - 4212
ISSN
0269-4042
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.