OAK

miR-27a-3p Targets ATF3 to Reduce Calcium Deposition in Vascular Smooth Muscle Cells

Metadata Downloads
Abstract
Vascular calcification, the ectopic deposition of calcium in blood vessels, develops in association with various metabolic diseases and atherosclerosis and is an independent predictor of morbidity and mortality associated with these diseases. Herein, we report that reduction of microRNA-27a-3p (miR-27a-3p) causes an increase in activating transcription factor 3 (ATF3), a novel osteogenic transcription factor, in vascular smooth muscle cells. Both microRNA (miRNA) and mRNA microarrays were performed with rat vascular smooth muscle cells, and reciprocally regulated pairs of miRNA and mRNA were selected after bioinformatics analysis. Inorganic phosphate significantly reduced the expression of miR-27a-3p in A10 cells. The transcript level was also reduced in vitamin D3-administered mouse aortas. miR-27a-3p mimic reduced calcium deposition, whereas miR-27a-3p inhibitor increased it. The Atf3 mRNA level was upregulated in a cellular vascular calcification model, and miR-27a-3p reduced the Atf3 mRNA and protein levels. Transfection with Atf3 could recover the miR-27a-3p-induced reduction of calcium deposition. Our results suggest that reduction of miR-27a-3p may contribute to the development of vascular calcification by de-repression of ATF3. © 2020 The Author(s)Vascular calcification causes stiffness of blood vessels, which causes secondary damage to the cardiovascular system. A reduction in the microRNA miR-27a-3p leads to an increase in the transcription factor ATF3, which induces calcium deposition. This miR-27a-3p/ATF signaling pathway may provide a novel therapeutic target for vascular calcification. © 2020 The Author(s)
Author(s)
Choe, N.Kwon, D.-H.Ryu, J.Shin, S.Cho, H.J.Joung, H.Eom, G.H.Ahn, Y.Park, Woo JinNam, K.-I.Kim, Y.-K.Kook, H.
Issued Date
2020-12
Type
Article
DOI
10.1016/j.omtn.2020.09.030
URI
https://scholar.gist.ac.kr/handle/local/11817
Publisher
Cell Press
Citation
Molecular Therapy - Nucleic Acids, v.22, pp.627 - 639
ISSN
2162-2531
Appears in Collections:
Department of Life Sciences > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.