OAK

Metagenomic exploration of antibiotic resistome in treated wastewater effluents and their receiving water

Metadata Downloads
Abstract
Environmental dissemination of antimicrobial resistance is a global health problem. Antimicrobial-resistant bacteria and antibiotic-resistant genes (ARGs) are constantly released into the environment through effluents (EFs) from wastewater treatment plants (WWTPs). Thus, requiring a better understanding of the selection and fate of ARGs in wastewater treatment processes. Therefore, we investigated the impacts of urban WWTP EFs on receiving water in the context of their resistomes and mobilomes. We used a HiSeq-based short read metagenomic approach to address the dynamics and diversity of ARGs in WWTP EF as well as the upstream (UP) and downstream (DN) river waters, followed by an investigation of plasmid-mediated ARGs. The abundance of ARGs at each site varied from 7.2 × 10−2 to 7.4 × 10−1 ARG copies per 16S rRNA gene copy, and EF samples showed the highest abundance, followed by DN and UP water samples. ARG diversity ranged from 121 to 686 types per site, and EF had the most diverse ARGs. Commonly identified ARGs in the EF and DN samples were clinically important and were absent in UP samples. The abundance of ARGs, mobile genetic elements (MGEs), and plasmid contigs found only in EF and DN were positively correlated with each other, indicating the importance of mobilomes in the dissemination of ARGs in the environment. Moreover, the proportions of plasmid-mediated ARGs was highest in the EF samples, followed by the DN and UP samples. These findings suggest that WWTP EF may act as a driving factor shaping the resistomes and mobilomes of receiving waters. In particular, a higher abundance of plasmid-mediated ARGs in WWTP EF suggests higher transmissibility in the DN environment. © 2020 Elsevier B.V.
Author(s)
Raza,SJo, HyejunKim, JungmanShin, HanseobHur, Hor-GilUnno, Tatsuya
Issued Date
2021-04
Type
Article
DOI
10.1016/j.scitotenv.2020.142755
URI
https://scholar.gist.ac.kr/handle/local/11593
Publisher
Elsevier BV
Citation
Science of the Total Environment, v.765
ISSN
0048-9697
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.