OAK

Investigation of electron beam parameters in laser wakefield acceleration using skewed laser pulse and external magnetic field

Metadata Downloads
Abstract
We investigate the parameters of accelerated electron bunch in laser wakefield acceleration (LWFA), when a skewed laser pulse propagates through a plasma in the presence of a transverse magnetic field. Two dimensional particle-in-cell (2D-PIC) simulations have been performed under the consideration of pulse skewness parameter (s? = ?l/?t) that is defined as the ratio of leading (?l) to trailing pulse edge (?t) duration. The injected charge is estimated as 23 pC for the laser strength parameter a0 = 2 when s? changes from 1 to 0.45 at a laser propagation distance of 1.5 mm with 50T magnetic field. The electron beam emittance reduces about 50% when leading edge of the pulse becomes two-fold sharper (s? = 0.45) with 50T magnetic field. Energy spread of accelerated electron bunch is also reduced from 18 to 6.6%. Hence, in the presence of a transverse magnetic field, the laser pulse skewness can significantly improve the quality of the accelerated electron bunch (i.e. charge, mean energy and emittance) in laser wakefield acceleration.
Author(s)
Gopal, K.Gupta, D. N.Jain, A.Hur, M. S.Suk, H.
Issued Date
2021-05
Type
Article
DOI
10.1016/j.cap.2021.03.003
URI
https://scholar.gist.ac.kr/handle/local/11535
Publisher
ELSEVIER
Citation
CURRENT APPLIED PHYSICS, v.25, pp.82 - 89
ISSN
1567-1739
Appears in Collections:
Department of Physics and Photon Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.