OAK

Hybrid Genetic Firefly Algorithm-Based Routing Protocol for VANETs

Metadata Downloads
Abstract
Vehicular Adhoc Networks (VANETs) are used for efficient communication among the vehicles to vehicle (V2V) infrastructure. Currently, VANETs are facing node management, security, and routing problems in V2V communication. Intelligent transportation systems have raised the research opportunity in routing, security, and mobility management in VANETs. One of the major challenges in VANETs is the optimization of routing for desired traffic scenarios. Traditional protocols such as Adhoc On-demand Distance Vector (AODV), Optimized Link State Routing (OLSR), and Destination Sequence Distance Vector (DSDV) are perfect for generic mobile nodes but do not fit for VANET due to the high and dynamic nature of vehicle movement. Similarly, swarm intelligence routing algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) routing techniques are partially successful for addressing optimized routing for sparse, dense, and realistic traffic network scenarios in VANET. Also, the majority of metaheuristics techniques suffer from premature convergence, being stuck in local optima, and poor convergence speed problems. Therefore, a Hybrid Genetic Firefly Algorithm-based Routing Protocol (HGFA) is proposed for faster communication in VANET. Features of the Genetic Algorithm (GA) are integrated with the Firefly algorithm and applied in VANET routing for both sparse and dense network scenarios. Extensive comparative analysis reveals that the proposed HGFA algorithm outperforms Firefly and PSO techniques with 0.77% and 0.55% of significance in dense network scenarios and 0.74% and 0.42% in sparse network scenarios, respectively.
Author(s)
Singh, Gagan DeepPrateek, ManishKumar, SunilVerma, MadhushiSingh, DilbagLee, Heung-No
Issued Date
2022-01
Type
Article
DOI
10.1109/ACCESS.2022.3142811
URI
https://scholar.gist.ac.kr/handle/local/11071
Publisher
Institute of Electrical and Electronics Engineers Inc.
Citation
IEEE Access, v.10, pp.9142 - 9151
ISSN
2169-3536
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.