OAK

Multi-Object Tracking and Segmentation with Embedding Mask-based Affinity Fusion in Hierarchical Data Association

Metadata Downloads
Abstract
In this paper, we propose a highly feasible fully online multi-object tracking and segmentation (MOTS) method that uses instance segmentation results as an input. The proposed method is based on the Gaussian mixture probability hypothesis density (GMPHD) filter, a hierarchical data association (HDA), and a mask-based affinity fusion (MAF) model to achieve high-performance online tracking. The HDA consists of two associations: segment-to-track and track-to-track associations. One affinity, for position and motion, is computed by using the GMPHD filter, and the other affinity, for appearance is computed by using the responses from single object trackers such as kernalized correlation filter, SiamRPN, and DaSiamRPN. These two affinities are simply fused by using a score-level fusion method such as min-max normalization referred to as MAF. In addition, to reduce the number of false positive segments, we adopt mask IoU-based merging (mask merging). The proposed MOTS framework with the key modules: HDA, MAF, and mask merging, is easily extensible to simultaneously track multiple types of objects with CPU-only execution in parallel processing. In addition, the developed framework only requires simple parameter tuning unlike many existing MOTS methods that need intensive hyperparameter optimization. In the experiments on the two popular MOTS datasets, the key modules show some improvements. For instance, ID-switch decreases by more than half compared to a baseline method in the training sets. In conclusion, our tracker achieves state-of-the-art MOTS performance in the test sets. Author
Author(s)
Song, Young-MinYoon, Young-ChulYoon, KwangjinJang, HyunsungHa, NamkooJeon, Moongu
Issued Date
2022-01
Type
Article
DOI
10.1109/ACCESS.2022.3171565
URI
https://scholar.gist.ac.kr/handle/local/11058
Publisher
Institute of Electrical and Electronics Engineers Inc.
Citation
IEEE Access, v.10, pp.60643 - 60657
ISSN
2169-3536
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.