OAK

CsRCI2D enhances high-temperature stress tolerance in Camelina sativa L. through endo-membrane trafficking from the plasma membrane

Metadata Downloads
Abstract
Rare Cold Inducible 2s (RCI2s) are hydrophobic proteins in cell membranes that participate in abiotic stress tolerance mechanisms. Additionally, they are used as traceable membrane trafficking markers in endocytosis studies. Plants regulate cell homeostasis through endocytosis by limiting the activity of plasma membrane transporter proteins to adapt to stressful conditions. In this study, we found high temperature (HT) stress-induced membrane trafficking of RCI2D in Camelina sativa L. The gene expression and protein synthesis were increased by HT stress at 37 degrees C. Moreover, rapid membrane trafficking of CsRCI2D was traced by multiple-phase membrane fractionation using sucrose density gradients and compared with CsRCI2E/F/G from the same protein family subgroup. The distribution of CsRCI2s was shown to be similar to that of the clathrin heavy chain, which is known as a major endocytosis protein. Subcellular localization of CsRCI2D was observed in the plasma membrane and endo-membranes and overlapped with membrane lipids. CsRCI2D co-localized with lipids, and its overexpression increased the intracellular lipid content compared to that of wild-type camelina. Moreover, transgenic camelina lines showed enhanced HT stress tolerance during germination and hypocotyl elongation when compared to the wild type. These results suggest that HT-induced CsRCI2D membrane trafficking enhances HT stress tolerance in camelina.
Author(s)
Kim, Hyun-SungShin, Jung-HoLee, Hyeon-SookKim, SeheeJang, Ha-YoungKim, EunsukAhn, Sung-Ju
Issued Date
2022-07
Type
Article
DOI
10.1016/j.plantsci.2022.111294
URI
https://scholar.gist.ac.kr/handle/local/10748
Publisher
ELSEVIER IRELAND LTD
Citation
PLANT SCIENCE, v.320
ISSN
0168-9452
Appears in Collections:
Department of Environment and Energy Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.