OAK

Quasi-normal modes of dyonic black holes and magneto-hydrodynamics

Metadata Downloads
Abstract
We revisit the magneto-hydrodynamics in (2+1) dimensions and confirm that it is consistent with the quasi-normal modes of the (3+1) dimensional dyonic black holes in the most general set-up with finite density, magnetic field and wave vector. We investigate all possible modes (sound, shear, diffusion, cyclotron etc.) and their interplay. For the magneto-hydrodynamics we perform a complete and detailed analysis correcting some prefactors in the literature, which is important for the comparison with quasi-normal modes. For the quasi-normal mode computations in holography we identify the independent fluctuation variables of the dyonic black holes, which is nontrivial at finite density and magnetic field. As an application of the quasi-normal modes of the dyonic black holes we investigate a transport property, the diffusion constant. We find that the diffusion constant at finite density and magnetic field saturates the lower bound at low temperature. We show that this bound can be understood from the pole-skipping point.
Author(s)
Jeong, Hyun-SikKim, Keun-YoungSun, Ya-Wen
Issued Date
2022-07
Type
Article
DOI
10.1007/JHEP07(2022)065
URI
https://scholar.gist.ac.kr/handle/local/10731
Publisher
Springer Verlag
Citation
Journal of High Energy Physics, v.2022, no.7
ISSN
1126-6708
Appears in Collections:
Department of Physics and Photon Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.