OAK

기계독해 기반 부분 트리 연결 방법을 적용한 한국어 의존 파싱

Metadata Downloads
Alternative Title
Korean Dependency Parsing using Subtree Linking based on Machine Reading Comprehension
Abstract
한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔다. 그 중 그래프 기반 의존 파싱은 입력 문장을 인코딩한 후 지배소, 의존소에 대한 MLP를 적용하여 각각의 표상을 얻고 Biaffine 어텐션을 통해 모든 단어 쌍에 대한 그래프 점수를 얻어 이를 통해 트리를 생성하는 Biaffine 어텐션 모델이 대표적이다. Biaffine 어텐션 모델에서 문장 내의 각 단어들은 구문 트리 내의 부분 트리의 역할을 하지만 두 단어간의 의존성만을 판단하기 때문에 부분 트리의 정보를 효율적으로 활용할 수 없다는 단점이 존재한다. 본 연구에서는 이러한 단점을 해결하기 위해 제안된 Span-Span(부분 트리-부분 트리)로의 부분 트리 정보를 직접 모델링하는 기계 독해 기반 의존 파싱 모델을 한국어 구문 분석 데이터 셋에 적용하여 기존 Biaffine 어텐션 방식의 의존 파싱 모델 대비 향상된 결과를 얻었다.
Author(s)
민진우나승훈신종훈김영길김강일
Issued Date
2022-08
Type
Article
DOI
10.5626/JOK.2022.49.8.617
URI
https://scholar.gist.ac.kr/handle/local/10662
Publisher
한국정보과학회
Citation
정보과학회논문지, v.49, no.8, pp.617 - 626
ISSN
2383-630X
Appears in Collections:
Department of AI Convergence > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.