OAK

Lithography-Free, Large-Area Spatially Segmented Disordered Structure for Light Harvesting in Photovoltaic Modules

Metadata Downloads
Abstract
Optical losses in photovoltaic (PV) systems cause nonradiative recombination or incomplete absorption of incident light, hindering the attainment of high energy conversion efficiency. The surface of the PV cells is encapsulated to not only protect the cell but also control the transmission properties of the incident light to promote maximum conversion. Despite many advances in elaborately designed photonic structures for light harvesting, the complicated process and sophisticated patterning highly diminish the cost-effectiveness and further limit the mass production on a large scale. Here, we propose a robust/comprehensive strategy based on the hybrid disordered photonic structure, implementing multifaceted light harvesting with an affordable/scalable fabrication method. The spatially segmented structures include (i) nanostructures in the active area for antireflection and (ii) microstructures in the inactive edge area for redirecting the incident light into the active area. A lithography-free hybrid disordered structure fabricated by the thermal dewetting method is a facile approach to create a large-area photonic structure with hyperuniformity over the entire area. Based on the experimentally realized nano-/microstructures, we designed a computational model and performed an analytical calculation to confirm the light behavior and performance enhancement. Particularly, the suggested structure is manufactured by the elastomeric stamps method, which is affordable and profitable for mass production. The produced hybrid structure integrated with the multijunction solar cell presented an improved efficiency from 28.0 to 29.6% by 1.06 times.
Author(s)
Ko, Joo HwanKim, So HeeKim, Min SeokHeo, Se-YeonYoo, Young JinKim, Yeong JaeLee, HeonSong, Young Min
Issued Date
2022-09
Type
Article
DOI
10.1021/acsami.2c12131
URI
https://scholar.gist.ac.kr/handle/local/10627
Publisher
American Chemical Society
Citation
ACS Applied Materials and Interfaces, v.14, no.39, pp.44419 - 44482
ISSN
1944-8244
Appears in Collections:
Department of Electrical Engineering and Computer Science > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록
  • 관련 파일이 존재하지 않습니다.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.