OAK

Effects of Top and Bottom Electrodes Materials and Operating Ambiance on the Characteristics of MgFx Based Bipolar RRAMs

Metadata Downloads
Author(s)
Das, Nayan C. C.Kim, Yong-PyoHong, Sung-MinJang, Jae-Hyung
Type
Article
Citation
NANOMATERIALS, v.13, no.6
Issued Date
2023-03
Abstract
The effects of electrode materials (top and bottom) and the operating ambiances (open-air and vacuum) on the MgFx-based resistive random-access memory (RRAM) devices are studied. Experiment results show that the device's performance and stability depend on the difference between the top and bottom electrodes' work functions. Devices are robust in both environments if the work function difference between the bottom and top electrodes is greater than or equal to 0.70 eV. The operating environment-independent device performance depends on the surface roughness of the bottom electrode materials. Reducing the bottom electrodes' surface roughness will reduce moisture absorption, minimizing the impact of the operating environment. Ti/MgFx/p(+)-Si memory devices with the minimum surface roughness of the p(+)-Si bottom electrode show operating environment-independent electroforming-free stable resistive switching properties. The stable memory devices show promising data retentions of >10(4) s in both environments with DC endurance properties of more than 100 cycles.
Publisher
MDPI
ISSN
2079-4991
DOI
10.3390/nano13061127
URI
https://scholar.gist.ac.kr/handle/local/10315
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.