OAK

Aqueous electrolyte-gated solution-processed metal oxide transistors for direct cellular interfaces

Metadata Downloads
Abstract
Biocompatible field-effect-transistor-based biosensors have drawn attention for the development of next-generation human-friendly electronics. High-performance electronic devices must achieve low-voltage operation, long-term operational stability, and biocompatibility. Herein, we propose an electrolyte-gated thin-film transistor made of large-area solution-processed indium-gallium-zinc oxide (IGZO) semiconductors capable of directly interacting with live cells at physiological conditions. The fabricated transistors exhibit good electrical performance operating under sub-0.5 V conditions with high on-/off-current ratios (>10(7)) and transconductance (>1.0 mS) over an extended operational lifetime. Furthermore, we verified the biocompatibility of the IGZO surface to various types of mammalian cells in terms of cell viability, proliferation, morphology, and drug responsiveness. Finally, the prolonged stable operation of electrolyte-gated transistor devices directly integrated with live cells provides the proof-of-concept for solution-processed metal oxide material-based direct cellular interfaces.
Author(s)
Kang, Dong-HeeChoi, Jun-GyuLee, Won-JuneHeo, DongmiWang, SungrokPark, SungjunYoon, Myung-Han
Issued Date
2023-06
Type
Article
DOI
10.1063/5.0138861
URI
https://scholar.gist.ac.kr/handle/local/10191
Publisher
AIP Publishing
Citation
APL BIOENGINEERING, v.7, no.2
ISSN
2473-2877
Appears in Collections:
Department of Materials Science and Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.