OAK

Strong coupling in plasmonic metal nanoparticles

Metadata Downloads
Abstract
The study of strong coupling between light and matter has gained significant attention in recent years due to its potential applications in diverse fields, including artificial light harvesting, ultraefficient polariton lasing, and quantum information processing. Plasmonic cavities are a compelling alternative of conventional photonic resonators, enabling ultracompact polaritonic systems to operate at room temperature. This review focuses on colloidal metal nanoparticles, highlighting their advantages as plasmonic cavities in terms of their facile synthesis, tunable plasmonic properties, and easy integration with excitonic materials. We explore recent examples of strong coupling in single nanoparticles, dimers, nanoparticle-on-a-mirror configurations, and other types of nanoparticle-based resonators. These systems are coupled with an array of excitonic materials, including atomic emitters, semiconductor quantum dots, two-dimensional materials, and perovskites. In the concluding section, we offer perspectives on the future of strong coupling research in nanoparticle systems, emphasizing the challenges and potentials that lie ahead. By offering a thorough understanding of the current state of research in this field, we aim to inspire further investigations and advances in the study of strongly coupled nanoparticle systems, ultimately unlocking new avenues in nanophotonic applications. © 2023, The Author(s).
Author(s)
Lee, Yoon-MinKim, Seong-EunPark, Jeong-Eun
Issued Date
2023-07
Type
Article
DOI
10.1186/s40580-023-00383-5
URI
https://scholar.gist.ac.kr/handle/local/10099
Publisher
Korea Nano Technology Research Society
Citation
Nano Convergence, v.10, no.1
ISSN
2196-5404
Appears in Collections:
Department of Chemistry > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.