OAK

Angular momentum regulation may dictate the slip severity in young adults

Metadata Downloads
Abstract
Falls cause negative impacts on society and the economy. Slipping is a common initiating event for falling. Yet, individuals differ in their ability to recover from slips. Persons experiencing mild slips can accommodate the perturbation without falling, whereas severe slipping is associated with inadequate or slow pre- or post-slip control that make these individuals more prone to fall. Knowing the discrepancies between mild and severe slippers in kinematic and kinetic variables improves understanding of adverse control responsible for severe slipping. This study examined differences across these participants with respect to center of mass (COM) height, sagittal angular momentum (H), upper body kinematics, and the duration of single/double phase. Possible causality of such relationships was also studied by observing the time-lead of the deviations. Twenty healthy young adults performed walking trials in dry and slippery conditions. They were classified into mild and severe slippers based on their heel slipping speed. No inter-group differences were observed in the upper extremity kinematics. It was found that mild and severe slippers do not differ in the studied variables during normal gait; however, they do show significant differences through slipping. Compared to mild slippers, sever slippers lowered their COM height following a slip, presented higher H, and shortened their single support phase (p-value<0.05 for all). Based on the time-lead observed in H over all other variables suggests that failure to control angular momentum may influence slip severity.
Author(s)
Nazifi M.M.Beschorner K.Hur, Pilwon
Issued Date
2020-03
Type
Article
DOI
10.1371/journal.pone.0230019
URI
https://scholar.gist.ac.kr/handle/local/8784
Publisher
Public Library of Science
Citation
PLoS ONE, v.15, no.3
ISSN
1932-6203
Appears in Collections:
Department of Mechanical and Robotics Engineering > 1. Journal Articles
공개 및 라이선스
  • 공개 구분공개
파일 목록

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.