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Abstract
Let K be a simplicial complex on vertex set V . K is called d-Leray if the homology
groups of any induced subcomplex of K are trivial in dimensions d and higher. K is
called d-collapsible if it can be reduced to the void complex by sequentially removing
a simplex of size at most d that is contained in a unique maximal face. Motivated by
results of Eckhoff and of Montejano and Oliveros on “tolerant” versions of Helly’s
theorem, we define the t-tolerance complex of K , Tt (K ), as the simplicial complex on
vertex set V whose simplices are formed as the union of a simplex in K and a set of
size at most t . We prove that for any d and t there exists a positive integer h(t, d) such
that, for every d-collapsible complex K , the t-tolerance complex Tt (K ) is h(t, d)-
Leray. As an application, we present some new tolerant versions of the colorful Helly
theorem.
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1 Introduction

Let F be a finite family of non-empty sets. The nerve of F is the simplicial complex

N (F) =
{
F ′ ⊂ F :

⋂
A∈F ′

A �= ∅

}
.

A simplicial complex K is called d-representable if it is isomorphic to the nerve of a
family of convex sets in R

d .
Two closely related notions are the d-collapsibility and d-Lerayness of a complex,

which were introduced byWegner in [23] as generalizations of d-representability. Let
V be a finite set, and let K be a simplicial complex on vertex set V . A face σ in K
is said to be free if there exists exactly one maximal face of K that contains σ . Given
a free face σ of cardinality at most d, we call the operation of removing from K all
faces containing σ an elementary d-collapse. The complex K is called d-collapsible
if all of its faces can be removed by performing a sequence of elementary d-collapses.
The collapsibility number of K , denoted by C(K ), is the minimum integer d such that
K is d-collapsible.

Let F be a field. For an integer i ≥ −1, let H̃i (K ) be the reduced i-dimensional
homology group of K with coefficients in F. For U ⊂ V , the subcomplex of K
induced by U is the complex K [U ] = {σ ∈ K : σ ⊂ U }. The complex K is called
d-Leray (overF) if all its induced subcomplexes have trivial reduced homology groups
in dimensions d and higher; that is, if H̃i (K [U ]) = 0 for all i ≥ d and U ⊂ V . The
Leray number of K (over F), denoted by L(K ), is the minimum integer d such that
K is d-Leray.

It was shown in [23] that every d-representable complex is d-collapsible, and that
every d-collapsible complex is d-Leray. See the survey paper by Tancer [21] for an
overview of d-representability, d-collapsibility and d-Lerayness.

Helly’s theorem [8] is a fundamental result in combinatorial geometry that asserts
the following: for every finite family of convex sets in R

d , if every subfamily of size
at most d + 1 has a point in common, then the whole family has a point in common.
See, for example, [1] for an overview of results and open problems related to Helly’s
theorem.

Let K be a complex on vertex set V . A missing face of K is a set τ ⊂ V such that
τ /∈ K but σ ∈ K for any σ � τ . The Helly dimension of K , denoted by h(K ), is the
maximum dimension of a missing face of K . Helly’s theorem is equivalent to the fact
that, if K is d-representable, then h(K ) ≤ d.

Since the boundary of a k-dimensional simplex has non-trivial homology in dimen-
sion k − 1, then every d-Leray complex K does not contain the boundary of a
k-dimensional simplex as an induced subcomplex, for any k > d. This shows that
the bound h(K ) ≤ d also holds when K is d-Leray (and therefore the same holds
when K is d-collapsible).

Let H be an r -uniform hypergraph on vertex set V . The covering number of H,
denoted by τ(H), is the minimum size of a set U ⊂ V such that U intersects all the
edges ofH. The hypergraphH is called t-critical if τ(H) = t and τ(H′) < t for every
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hypergraphH′ that is obtained fromH be removing an edge. TheErdős-Gallai number
η(r , t) is the maximum number of vertices in an r -uniform t-critical hypergraph.
Equivalently, η(r , t) is the minimum positive integer n such that for every r -uniform
hypergraph H with τ(H) ≥ t there exists an H′ ⊂ H with |V (H′)| ≤ n such that

τ(H′) ≥ t . Erdős and Gallai showed in [7] that η(2, t) = 2t and η(r , 2) =
⌊( r+2

2

)2⌋
.

For general r and t , Tuza proved in [22] the bound

η(r , t) <

(
r + t − 1

r − 1

)
+
(
r + t − 2

r − 1

)
,

which is tight up to a constant factor. Recently, an improved bound η(3, t) ≤ (t+2
2

)+
O(t5/3) was proved by Kézdy and Lehel in [13]. In particular, we have η(r , t) =
O(tr−1) for r fixed and t → ∞, and η(r , t) = O(r t ) for t fixed and r → ∞.

LetF be a finite family of sets. We say thatF has a point in common with tolerance
t if there is a subfamily F ′ ⊂ F such that |F ′| ≥ |F | − t and ∩A∈F ′ A �= ∅. In
other words, F has a point in common with tolerance t if there exists a point in R

d

intersecting all but at most t of the sets in F .
The following “tolerant version” of Helly’s theorem was observed by Eckhoff in

[6], and independently by Montejano and Oliveros in [18].

Theorem 1.1 (Eckhoff [6, Section 6],Montejano andOliveros [18, Theorem 3.1]) Let
F be a finite family of convex sets in R

d , and let t ≥ 0 be an integer. If every subfamily
F ′ ⊂ F of size at most η(d + 1, t + 1) has a point in common with tolerance t, then
F has a point in common with tolerance t.

In fact, it was shown in [18] (and implicitly in [6]) that any family of sets satisfying
a “Helly property” satisfies also a corresponding “tolerant Helly property”. In terms
of simplicial complexes, this may be stated as follows:

Let K be a simplicial complex on vertex set V . For any integer t ≥ 0, we define
the simplicial complex

Tt (K ) = {η ∪ τ : η ∈ K , τ ⊂ V , |τ | ≤ t}
= {σ ⊂ V : ∃η ⊂ σ, |σ \ η| ≤ t, η ∈ K }.

We call Tt (K ) the t-tolerance complex of K . Note that T0(K ) = K for every complex
K .

Theorem 1.2 (Montejano-Oliveros [18, Theorem 1.1]) Let K be a simplicial complex
with h(K ) ≤ d, and let t ≥ 0 be an integer. Then, h(Tt (K )) ≤ η(d + 1, t + 1) − 1.

It is natural to ask whether we can achieve a stronger conclusion by strengthening
the assumptions on K . By replacing the Helly dimension with the collapsibility or
Leray number, the following conjectures arise:

Conjecture 1.3 Let K be a d-Leray simplicial complex. Then, Tt (K ) is (η(d + 1, t +
1) − 1)-Leray.
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Conjecture 1.4 Let K be a d-collapsible simplicial complex. Then, Tt (K ) is (η(d +
1, t + 1) − 1)-collapsible.

Let t ≥ 1, and let A and B be two disjoint sets of size t + 1 each. Let K be the
simplicial complex on vertex set A∪B whose maximal faces are the sets A and B. It is
easy to check that K is 1-collapsible, and therefore 1-Leray (in fact, it is easy to show
that it is even 1-representable). On the other hand, the complex Tt (K ) is the boundary
of the simplex A∪ B. That is, Tt (K ) is a 2t-dimensional sphere. In particular, it is not
2t-Leray. Therefore, for d = 1, the bound η(2, t + 1) − 1 = 2t + 1 in Conjectures
1.3 and 1.4 cannot be improved.

For t = 1, it was shown in [19] and independently in [18, Theorem 3.2] that
there exists a d-representable complex K such that T1(K ) is the boundary of a(⌊( d+3

2

)2⌋− 1
)
-dimensional simplex. In particular, T1(K ) is not

(⌊( d+3
2

)2⌋− 2
)
-

Leray. Therefore, for t = 1, the bound η(d+1, 2)−1 =
⌊( d+3

2

)2⌋−1 in Conjectures

1.3 and 1.4 cannot be improved.
On the other hand, it was recently shown in [9] that for d = 2 and t = 3 the bound

in Theorem 1.1 is not tight. This suggests that the bounds in Conjectures 1.4 and 1.3
may also not be sharp in general.

Our main result is the following:

Theorem 1.5 Let K be a d-collapsible complex, and let t ≥ 0 be an integer. Then,
Tt (K ) is h(t, d)-Leray, where h(0, d) = d for all d ≥ 0, and for t > 0,

h(t, d) =
⎛
⎝min{t,d}∑

s=1

(
d

s

)
(h(t − s, d) + 1)

⎞
⎠+ d.

Note that we require the stronger property (collapsibility) for K , and obtain only
the weaker property (Leray) for the tolerance complex. For d = 1, we obtain the tight
bound h(t, 1) = 2t + 1 = η(2, t + 1) − 1. For d > 1, h(t, d) is larger than the
conjectural bound η(d + 1, t + 1) − 1. However, when t is fixed, we have h(t, d) =
O(dt+1), which is of the same order of magnitude as that of η(d + 1, t + 1) − 1.

In the special case d = 2, t = 1, we can prove the following stronger bound:

Theorem 1.6 Let K be a 2-collapsible complex. Then, T1(K ) is 5-Leray.

Note that, since 5 = η(3, 2) − 1, the bound in Theorem 1.6 is tight.
In [11, 12], Kalai and Meshulam studied the effects of different operations on the

Leray numbers of simplicial complexes. They showed that unions and intersections
of simplicial complexes [11], and certain projections of complexes [12], preserve the
boundedness of Leray numbers. By Theorems 1.5 and 1.6, the t-tolerance construction
Tt (·) is another example of such a “Leray preserving” operation (although under the
stronger assumption of bounded collapsibility of the original complex). It would be
interesting to find other such operations.
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1.1 Organization

The paper is organized as follows. In Sect. 2 we present some basic facts about sim-
plicial complexes, homology and collapsibility. In Sect. 3 we prove some auxiliary
topological results that we will use later. In Sect. 4 we prove our main result, Theorem
1.5. In Sect. 5 we prove Theorem 1.6 about the Leray number of the 1-tolerance com-
plex of a 2-collapsible complex. In Sect. 6 we present some applications to tolerant
versions of the colorful Helly theorem.

2 Background

In this section we recall some basic definitions and results about simplicial complexes,
homology and collapsibility.

2.1 Simplicial Complexes

Let V be a finite set and let K ⊂ 2V be a family of sets. K is called a simplicial
complex if σ ∈ K for all τ ∈ K and σ ⊂ τ . The set V is called the vertex set of K .
A set σ ∈ K is called a simplex or a face of K . The dimension of a simplex σ ∈ K is
dim(σ ) = |σ | − 1. For short, we call a k-dimensional simplex a k-simplex. Let K (k)
be the set of all k-simplices.

The dimension of the complex K , denoted by dim(K ), is the maximal dimension
of a simplex in K .

K ′ is a subcomplex of K if it is a simplicial complex, and each simplex of K ′ is
also a simplex of K .

Let U ⊂ V . The subcomplex of K induced by U is the complex

K [U ] = {σ ∈ K : σ ⊂ U }.

Let σ ∈ K . We define the link of σ in K to be the subcomplex

lk(K , σ ) = {τ ∈ K : σ ∩ τ = ∅, σ ∪ τ ∈ K },

the star of σ in K to be the subcomplex

st(X , σ ) = {τ ∈ K : σ ∪ τ ∈ K }

and the costar of σ in K to be the subcomplex

cost(K , σ ) = {τ ∈ K : σ �⊂ τ }.

If σ = {v}, we write lk(K , v) = lk(K , {v}), st(K , v) = st(K , {v}) and K\v =
cost(K , {v}) = K [V \{v}].
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Let X ,Y be simplicial complexes on disjoint vertex sets. We define the join of X
and Y to be the simplicial complex

X ∗ Y = {σ ∪ τ : σ ∈ X , τ ∈ Y }.

Let v ∈ V . If v ∈ τ for every maximal face τ ∈ K we say that K is a cone over v.
For U ⊂ V , we denote by 2U = {σ : σ ⊂ U } the complete complex on vertex set

U .

2.2 Simplicial Homology

Let K be a simplicial complex, and let F be a field. Let H̃k (K ) be the k-th reduced
homology group of K with coefficients in F. We say that K is acyclic if H̃k (K ) = 0
for all k ≥ −1.

A useful tool for computing homology is the Mayer-Vietoris long exact sequence:

Theorem 2.1 (Mayer–Vietoris) Let X ,Y be simplicial complexes. Then, there is an
exact sequence

· · · → H̃k (X ∩ Y ) → H̃k (X)
⊕

H̃k (Y ) → H̃k (X ∪ Y ) → H̃k−1 (X ∩ Y ) → · · ·

The following special case will be of use later:

Theorem 2.2 Let K be a simplicial complex on vertex set V , and let v ∈ V . Then,
there is an exact sequence

· · · → H̃k (lk(K , v)) → H̃k (K \ v) → H̃k (K ) → H̃k−1 (lk(K , v)) → · · ·

Proof Let A = K\v and B = st(K , v). By Theorem 2.1, we have a long exact
sequence

· · · → H̃k (A ∩ B) → H̃k (A)
⊕

H̃k (B) → H̃k (A ∪ B) → H̃k−1 (A ∩ B) → · · ·

Note that B is a cone over v, and therefore H̃k (B) = 0 for all k. Moreover, A∪B = K
and A ∩ B = lk(K , v). So, we obtain a long exact sequence

· · · → H̃k (lk(K , v)) → H̃k (K \ v) → H̃k (K ) → H̃k−1 (lk(K , v)) → · · ·

��
Another usefulway of computing homology is by the application of nerve theorems.

Let X1, . . . , Xm be simplicial complexes. The nerve of the family {X1, . . . , Xm} is
the simplicial complex

N ({X1, . . . , Xm}) =
{
I ⊂ [m] :

⋂
i∈I

Xi �= {∅}
}

,
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where [m] := {1, 2, . . . ,m}. Roughly speaking, given a family of simplicial com-
plexes, a nerve theorem describes how much the topology of the nerve of the family
reflects the topology of the union of the complexes, when every non-empty intersec-
tion of the complexes satisfies certain topological restrictions (see e.g. [3, Theorem
6] or [17, Theorem 2.1]). Here, we will use the following simple version of the nerve
theorem:

Theorem 2.3 (Leray’s Nerve Theorem) Let X1, . . . , Xm be simplicial complexes, and
let X =⋃m

i=1 Xi . If, for every I ⊂ [m],⋂i∈I Xi is either empty or acyclic, then

H̃k (X) ∼= H̃k (N ({X1, . . . , Xm}))

for all k ≥ −1.

For the union of simplicial complexes, the Leray number can be bounded by the
following result by Kalai and Meshulam.

Theorem 2.4 (Kalai and Meshulam [11]) Let X =⋃r
i=1 Xi . Then,

L(X) ≤
r∑

i=1

(L(Xi ) + 1) − 1.

2.2.1 Relative Homology

Let F be a field. Let X be a simplicial complex and let Y be a subcomplex of X . Let
Ck(X ,Y ) be the F-vector space generated by the ordered k-simplices in X \ Y , under
the relations

[v0, . . . , vk] = sgn(π)[vπ(0), . . . , vπ(k)],

for every k-simplex {v0, . . . , vk} ∈ X \ Y and permutation π : {0, . . . , k} →
{0, . . . , k}. We define a linear map ∂k : Ck(X ,Y ) → Ck−1(X ,Y ) that acts on the
spanning set by

∂k[v0, . . . , vk] =
∑

i∈{0,...,k}:
{v0,...,vi−1,vi+1,...,vk }/∈Y

(−1)i [v0, . . . , vi−1, vi+1, . . . , vk].

Wedefine the group of k-cycles as Zk(X ,Y ) = Ker(∂k) and the group of k-boundaries
as Bk(X ,Y ) = Im(∂k+1). For any k, we have Bk(X ,Y ) ⊂ Zk(X ,Y ), so we can define
the quotient

Hk (X ,Y ) = Zk(X ,Y )/Bk(X ,Y ).

We call Hk (X ,Y ) the k-th relative homology group of the pair Y ⊂ X . The relative
homology of the pair Y ⊂ X is related to the homology of the two complexes via the
following result:
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Theorem 2.5 (Long exact sequence of a pair) Let Y ⊂ X be simplicial complexes.
Then, there is an exact sequence

· · · → H̃k (Y ) → H̃k (X) → Hk (X ,Y ) → H̃k−1 (Y ) → · · ·

2.3 Collapsibility

We will need the following properties, showing that d-collapsibility is “hereditary”:

Lemma 2.6 (Wegner [23]) Let K be a d-collapsible complex on vertex set V , and let
U ⊂ V . Then, K [U ] is also d-collapsible.
Lemma 2.7 (Khmelnitsky [14], see also [15, Prop 3.7]) Let K be a d-collapsible
complex, and let σ ∈ K. Then, lk(K , σ ) is also d-collapsible.

It will be convenient to use the following equivalent definition of d-collapsibility:

Lemma 2.8 (Tancer [20, Lemma 5.2]) Let K be a simplicial complex. Then, K is
d-collapsible if and only if one of the following holds:

• dim(K ) < d, or
• There exists some σ ∈ K such that |σ | = d, σ is contained in a unique maximal
face τ �= σ of K , and cost(K , σ ) is d-collapsible.

3 Some Topological Preliminaries

In this section we prove some auxiliary results on the homology groups of simplicial
complexes that we will later need.

Using the Mayer-Vietoris exact sequence (Theorem 2.1) and Leray’s Nerve
Theorem (Theorem 2.3), we can prove the following.

Lemma 3.1 Let X1, . . . , Xm be simplicial complexes, and let X =⋃m
i=1 Xi . If for all

I ⊂ [m] of size at least 2, the complex ∩i∈I Xi is non-empty and acyclic, then

H̃k (X) ∼=
m⊕
i=1

H̃k (Xi ) .

for all k ≥ −1.

Proof We argue by induction on m. For m = 1 the claim is trivial. Assume m > 1.
Since

⋂
i∈I Xi is non-empty and acyclic for every I ⊂ [m − 1], we obtain, by the

induction hypothesis,

H̃k

(
m−1⋃
i=1

Xi

)
∼=

m−1⊕
i=1

H̃k (Xi )
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for all k ≥ −1.
Since X =

(⋃m−1
i=1 Xi

)
∪ Xm , we have by Theorem 2.1 a long exact sequence

· · · → H̃k

⎛
⎝m−1⋃

i=1

(Xi ∩ Xm)

⎞
⎠→

m⊕
i=1

H̃k (Xi ) → H̃k (X) → H̃k−1

⎛
⎝m−1⋃

i=1

(Xi ∩ Xm)

⎞
⎠→ · · ·

Hence, it is enough to show that

H̃k

(
m−1⋃
i=1

(Xi ∩ Xm)

)
= 0

for all k ≥ −1.
By the assumptions of this lemma, the nerve N = N ({Xi∩Xm}m−1

i=1 ) is the complete
complex on vertex set [m − 1]. Moreover, for all I ⊂ [m − 1], the complex

⋂
i∈I

(Xi ∩ Xm) =
⋂

i∈I∪{m}
Xi

is acyclic. Therefore, by Theorem 2.3, we obtain

H̃k

(
m−1⋃
i=1

(Xi ∩ Xm)

)
∼= H̃k (N ) = 0

for all k ≥ −1. Thus,

H̃k (X) ∼=
m⊕
i=1

H̃k (Xi )

for all k ≥ −1. ��
We can think of Lemma 3.1 as a variant of the Nerve Theorem, and indeed our proof

is similar to proofs of other versions of the Nerve theorem using the Mayer-Vietoris
exact sequence, see e.g. [4, 5].

We will also need the following simple result about relative homology:

Lemma 3.2 Let X be a simplicial complex on vertex set V , and let Y ⊂ X be a
subcomplex. Assume that there is some σ ∈ X and subcomplexes W ⊂ Z ⊂ X [V \σ ]
such that

X \ Y = {η ∪ σ : η ∈ Z \ W }.

Then,

Hk+|σ | (X ,Y ) ∼= Hk (Z ,W )
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for all k.

Proof Letσ = {v1, . . . , v|σ |}. For all k, letφk : Ck+|σ |(X ,Y ) → Ck(Z ,W ) be defined
by

φk([u0, . . . , uk, v1, . . . , v|σ |]) = [u0, . . . , uk]

for any {u0, . . . , uk} ∈ Z \ W , and extended linearly. Note that the maps φk are
linear isomorphisms. Denote by ∂k the boundary operator of Ck(X ,Y ) and by ∂ ′

k the
boundary operator of Ck(Z ,W ). We are left to show that φ is a chain map. That is,
for any η = {u0, . . . , uk} ∈ Z \ W , we need to show that

φk−1(∂k+|σ |([u0, . . . , uk, v1, . . . , v|σ |])) = ∂ ′
k(φk([u0, . . . , uk, v1, . . . , v|σ |])).

We have

∂k+|σ |([u0, . . . , uk, v1, . . . , v|σ |])
=

∑
i∈{0,...,k}:

η∪σ\{ui }/∈Y

(−1)i [u0, . . . , ui−1, ui+1, . . . , uk, v1, . . . , v|σ |]

+
∑

j∈{1,...,|σ |}:
η∪σ\{v j }/∈Y

(−1)k+ j [u0, . . . , uk, v1, . . . , v j−1, v j+1, . . . , v|σ |].

Note that, since X\Y = {τ ∪σ : τ ∈ Z\W }, η∪σ\{ui } ∈ Y if and only if η\{ui } ∈ W ,
and η ∪ σ\{v j } ∈ Y for all 1 ≤ j ≤ |σ |. Therefore, we have

∂k+|σ |([u0, . . . , uk, v1, . . . , v|σ |])
=

∑
i∈{0,...,k}:
η\{ui }/∈W

(−1)i [u0, . . . , ui−1, ui+1, . . . , uk, v1, . . . , v|σ |].

Hence,

φk−1(∂k+|σ |([u0, . . . , uk, v1, . . . , v|σ |]))
=

∑
i∈{0,...,k}:
η\{ui }/∈W

(−1)i [u0, . . . , ui−1, ui+1, . . . , uk]

= ∂ ′
k([u0, . . . , uk]) = ∂ ′

k(φk([u0, . . . , uk, v1, . . . , v|σ |])).

So Ck+|σ |(X ,Y ) and Ck(Z ,W ) are isomorphic as chain complexes, and in particular
have isomorphic homology groups. ��
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4 Proof of Theorem 1.5

In this section, we present the proof of Theorem 1.5. Note that the construction of
the tolerance complexes depends on the vertex set of the original complex. For the
construction of tolerance complexes, we will consider the vertex set of K [U ] to be the
setU , the vertex set of cost(K , σ ) to be V , and the vertex set of lk(K , σ ) to be V \ σ .

The main ingredient in the proof of Theorem 1.5 is the following result.

Proposition 4.1 Let K be a simplicial complex, and σ ∈ K such that σ is contained
in a unique maximal simplex σ ∪U ∈ K, where U �= ∅. Then, for all k,

Hk (Tt (K ), Tt (cost(K , σ )))

∼=
⊕

W⊂V \(σ∪U ):
|W |=t

H̃k−|σ |−1

⎛
⎜⎜⎝ ⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K , σ \ σ ′)[U ∪ W ])

⎞
⎟⎟⎠ .

We postpone the proof of Proposition 4.1 to the end of this section.
Recall that h(t, d) is defined as follows: h(0, d) = d for all d ≥ 0, and for t > 0,

h(t, d) =
⎛
⎝min{t,d}∑

s=1

(
d

s

)
(h(t − s, d) + 1)

⎞
⎠+ d.

Theorem 1.5 Let K be a d-collapsible complex, and let t ≥ 0 be an integer. Then,
Tt (K ) is h(t, d)-Leray.

Proof Let V be the vertex set of K . Wewill show that H̃k (Tt (K )) = 0 for k ≥ h(t, d).
This is sufficient to prove the statement of the theorem, since Tt (K )[W ] = Tt (K [W ])
and, by Lemma 2.6, K [W ] is d-collapsible for every W ⊂ V .

We argue by induction on t . If t = 0 the statement obviously holds, since every
d-collapsible complex is d-Leray.

Let t ≥ 1. We argue by induction on the size of K , that is, the number of simplices
in K . If dim(K ) < d, then dim(Tt (K )) < d + t < h(t, d), so the statement holds.
Otherwise, by Lemma 2.8, there is some σ ∈ K such that |σ | = d, σ is contained in
a unique maximal face τ �= σ of K , and cost(K , σ ) is d-collapsible.

LetU = τ \σ �= ∅. By applying Theorem 2.5 to the pair Tt (cost(K , σ )) ⊂ Tt (K ),
we obtain the following long exact sequence:

· · · → H̃k (Tt (cost(K , σ ))) → H̃k ((Tt (K ))) → Hk (Tt (K ), Tt (cost(K , σ ))) → · · ·

By the induction hypothesis, H̃k (Tt (cost(K , σ ))) = 0 for k ≥ h(t, d). Therefore, it
is sufficient to show that Hk (Tt (K ), Tt (cost(K , σ ))) = 0 for k ≥ h(t, d).
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By Proposition 4.1, it is sufficient to show that, for every W ⊂ V \ (σ ∪U ) of size
t , the homology group

H̃k

⎛
⎜⎜⎝ ⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K , σ \ σ ′)[U ∪ W ])

⎞
⎟⎟⎠

is trivial for k ≥ h(t, d) − |σ | − 1 = h(t, d) − d − 1. Note that, for any σ ′ ⊂ σ ,
by Lemma 2.6 and Lemma 2.7, the complex lk(K , σ \ σ ′)[U ∪ W ] is d-collapsible.
Hence, by the induction hypothesis, for any σ ′ ⊂ σ of size 1 ≤ |σ ′| ≤ t , the complex
Tt−|σ ′|(lk(K , σ \ σ ′)[U ∪ W ]) is h(t − |σ ′|, d)-Leray. So, by Theorem 2.4,

L

⎛
⎜⎜⎜⎝

⋃
σ ′⊂σ :

1≤|σ ′|≤t

Tt−|σ ′|(lk(K , σ \ σ ′)[U ∪ W ])

⎞
⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎝

∑
σ ′⊂σ :

1≤|σ ′|≤t

h(t − |σ ′|, d) + 1

⎞
⎟⎟⎟⎠− 1

=
⎛
⎝min{t,d}∑

s=1

(
d

s

)
(h(t − s, d) + 1)

⎞
⎠− 1

= h(t, d) − d − 1.

In particular,

H̃k

⎛
⎜⎜⎝ ⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K , σ \ σ ′)[U ∪ W ])

⎞
⎟⎟⎠ = 0

for k ≥ h(t, d) − d − 1, as wanted. ��
As mentioned in the introduction, we can give explicit formulas for h(t, d) in some

special cases, and understand its asymptotic behaviour for fixed t as d tends to infinity.

Lemma 4.2 • h(t, 1) = 2t + 1,
• h(1, d) = d2 + 2d,
• For fixed t, h(t, d) = O(dt+1).

Proof First, we show that h(t, 1) = 2t + 1. We argue by induction on t . For t = 0 we
have h(0, 1) = 1 = 2t + 1. Now, assume t > 0. Then, by the definition of h(t, d) and
the induction hypothesis, we obtain

h(t, 1) = h(t − 1, 1) + 1 + 1 = 2(t − 1) + 3 = 2t + 1.
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Next, we show that h(1, d) = d2 + 2d. Indeed, this follows immediately from the
definition of h(t, d):

h(1, d) = d(h(0, d) + 1) + d = d2 + 2d.

Finally, we show that, for fixed t , h(t, d) = O(dt+1). We argue by induction on
t . For t = 0 we have h(0, d) = d = O(d). Let t > 1. We will show that there is
some constant Ct such that, for large enough d, h(t, d) ≤ Ctdt+1. By the definition
of h(t, d) and the induction hypothesis, we have,

h(t, d) =
(

t∑
s=1

(
d

s

)
(h(t − s, d) + 1)

)
+ d

≤
(

t∑
s=1

ds

s! (Ct−sd
t−s+1 + 1)

)
+ d

=
(

t∑
s=1

Ct−s

s!

)
dt+1 +

(
t∑

s=1

ds

s! + d

)

≤ Ctd
t+1

for Ct >
∑t

s=1
Ct−s
s! and large enough d. So, for fixed t , we have h(t, d) = O(dt+1).

��

Finally, we prove Proposition 4.1. We will need the following auxiliary results.

Lemma 4.3 Let K be a simplicial complex on vertex set V , and let σ ∈ K. Then,

Tt (K )\Tt (cost(K , σ ))

=

⎧⎪⎪⎨
⎪⎪⎩σ ∪ η : η ∈ Tt (lk(K , σ )) \

⎛
⎜⎜⎝ ⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K [V \ σ ′], σ \ σ ′))

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ .

Proof Suppose τ ∈ Tt (K ) \ Tt (cost(K , σ )). Since τ ∈ Tt (K ), we can write τ =
τ ′ ∪ τ ′′, where τ ′ ∈ K and |τ ′′| ≤ t . Moreover, we must have τ ′ ⊃ σ . Otherwise,
τ ′ ∈ cost(K , σ ), a contradiction to τ /∈ Tt (cost(K , σ )).

Let η = τ \ σ . Then, we can write η = (τ ′\σ) ∪ τ ′′. Since τ ′\σ ∈ lk(K , σ ), we
obtain η ∈ Tt (lk(K , σ )). We claim that

η /∈
⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K [V \ σ ′], σ \ σ ′)).
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Fig. 1 Illustration of the first
direction in the proof of Lemma
4.3: Let
τ ∈ Tt (K )\Tt (cost(K , σ )).
Then τ = τ ′ ∪ τ ′′, where
σ ⊂ τ ′ ∈ K , and |τ ′′| ≤ t .
Therefore, setting
η = (τ ′ \ σ) ∪ τ ′′, we obtain
τ = σ ∪ η, where
η ∈ Tt (lk(K , σ )) (a). Moreover,
η /∈
Tt−|σ ′|(lk(K [V \ σ ′], σ \ σ ′))
for any σ ′ ⊂ σ , 1 ≤ |σ ′| ≤ t .
Otherwise, η = η1 ∪ η2, where
η1 ∪ (σ \ σ ′) ∈ K (and
therefore, since
σ �⊂ η1 ∪ (σ \ σ ′),
η1 ∪ (σ \ σ ′) ∈ cost(K , σ )), and
|η2| ≤ t − |σ ′|. But then, since
τ = (η1 ∪ (σ \ σ ′)) ∪ (σ ′ ∪ η2),
we obtain τ ∈ Tt (cost(K , σ )), a
contradiction (b)

a

b

Assume for contradiction that η ∈ Tt−|σ ′|(lk(K [V \σ ′], σ\σ ′)) for some σ ′ ⊂ σ ,
1 ≤ |σ ′| ≤ t . Then, we can write

η = η1 ∪ η2,

where η1 ∩ σ = ∅, η1 ∪ (σ\σ ′) ∈ K and |η2| ≤ t − |σ ′|. Hence, we obtain

τ = σ ∪ η = (η1 ∪ (σ \ σ ′)) ∪ (σ ′ ∪ η2).

Since σ �⊂ η1 ∪ (σ \ σ ′) and |σ ′ ∪ η2| ≤ t , we have τ ∈ Tt (cost(K , σ )), which is a
contradiction to the assumption τ ∈ Tt (K ) \ Tt (cost(K , σ )) (see Fig. 1).

For the opposite direction, suppose τ = σ ∪ η, where

η ∈ Tt (lk(K , σ )) \

⎛
⎜⎜⎝ ⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K [V \ σ ′], σ \ σ ′))

⎞
⎟⎟⎠ .

We claim that τ ∈ Tt (K )\Tt (cost(K , σ )). Since η ∈ Tt (lk(K , σ )), we can write
η = η1 ∪ η2, where η1 ∩ σ = ∅, η1 ∪ σ ∈ K and |η2| ≤ t . Therefore, τ =
(η1 ∪ σ) ∪ η2 ∈ Tt (K ). We are left to show that τ /∈ Tt (cost(K , σ )). Assume for
contradiction that τ ∈ Tt (cost(K , σ )). Then, we can write τ = τ1∪τ2, where τ1 ∈ K ,
σ �⊂ τ1 and |τ2| ≤ t . Let σ ′ = τ2∩σ . Since σ �⊂ τ1 and σ ⊂ τ , we must have σ ′ �= ∅.
In particular, 1 ≤ |σ ′| ≤ t . We can write η as follows:

η = τ \ σ = (τ1 \ (σ \ σ ′)) ∪ (τ2 \ σ ′).
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Note that τ1\(σ\σ ′) ∈ lk(K [V \σ ′], σ\σ ′) and |τ2 \ σ ′| ≤ t − |σ ′|. Thus, η ∈
Tt−|σ ′|(lk(K [V \σ ′], σ\σ ′)), which is a contradiction to the assumption on η. This
completes the proof. ��

By Lemmas 3.2 and 4.3, we obtain:

Corollary 4.4 Let K be a simplicial complex, and let σ ∈ K. Then, for all k, we have

Hk (Tt (K ),Tt (cost(K , σ )))

∼= Hk−|σ |

⎛
⎜⎜⎜⎝Tt (lk(K , σ )),Tt (lk(K , σ )) ∩

⎛
⎜⎜⎜⎝

⋃
σ ′⊂σ :

1≤|σ ′|≤t

Tt−|σ ′|(lk(K [V \ σ ′], σ \ σ ′))

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ .

Proof of Proposition 4.1 Let

Y =
⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K [V \ σ ′], σ \ σ ′)).

By Corollary 4.4, we have

Hk (Tt (K ), Tt (cost(K , σ ))) ∼= Hk−|σ | (Tt (lk(K , σ )), Tt (lk(K , σ )) ∩ Y ) .

By applying Theorem 2.5 to the pair Tt (lk(K , σ )) ∩ Y ⊂ Tt (lk(K , σ )), we obtain a
long exact sequence

· · · → H̃k−|σ | (Tt (lk(K , σ ))) → Hk−|σ | (Tt (lk(K , σ )), Tt (lk(K , σ )) ∩ Y ) →
→ H̃k−|σ |−1 (Tt (lk(K , σ )) ∩ Y ) → H̃k−|σ |−1 (Tt (lk(K , σ ))) → · · ·

Note that lk(K , σ ) = 2U ; therefore,

Tt (lk(K , σ )) = 2U ∗ {τ ⊂ V \ (U ∪ σ) : |τ | ≤ t}.

In particular, since U �= ∅, Tt (lk(K , σ )) is contractible. Hence,

Hk−|σ | (Tt (lk(K , σ )), Tt (lk(K , σ )) ∩ Y ) ∼= H̃k−|σ |−1 (Tt (lk(K , σ )) ∩ Y ) .

We can write

Tt (lk(K , σ )) ∩ Y =
⋃

W⊂V \(σ∪U ):
|W |=t

2U∪W ∩ Y =
⋃

W⊂V \(σ∪U ):
|W |=t

YW , (4.1)
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where

YW = Y [U ∪ W ] =
⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K , σ \ σ ′)[U ∪ W ]).

Let m > 1, and let W1, . . . ,Wm ⊂ V \ (σ ∪ U ) be distinct sets, such that |Wi | = t
for all i ∈ [m]. Then,

m⋂
i=1

YWi =
⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K , σ \ σ ′)[U ∪ (∩m
i=1Wi )]).

Since | ∩m
i=1 Wi | ≤ t − 1, we have, for any v ∈ σ ,

U ∪ (∩m
i=1Wi ) ∈ Tt−1(lk(K , σ \ {v})[U ∪ (∩m

i=1Wi )]).

In particular, it implies

U ∪ (∩m
i=1Wi ) ∈

m⋂
i=1

YWi ,

and hence, we conclude

m⋂
i=1

YWi = 2U∪(∩m
i=1Wi ).

Since U �= ∅, the intersection
⋂m

i=1 YWi is non-empty and acyclic. Therefore, by
applying Lemma 3.1 to (4.1), we obtain

H̃k−|σ |−1 (Tt (lk(K , σ )) ∩ Y ) ∼=
⊕

W⊂V \(σ∪U ):
|W |=t

H̃k−|σ |−1 (YW )

∼=
⊕

W⊂V \(σ∪U ):
|W |=t

H̃k−|σ |−1

⎛
⎜⎜⎝ ⋃

σ ′⊂σ :
1≤|σ ′|≤t

Tt−|σ ′|(lk(K , σ \ σ ′)[U ∪ W ])

⎞
⎟⎟⎠ ,

as wanted. ��

5 Improved Bound for d = 2, t = 1

By Theorem 1.5 and Lemma 4.2, it follows that the 1-tolerance complex T1(K ) is
(d2 + 2d)-Leray for every d-collapsible complex K . This is of the same order of
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magnitude, but larger than the conjectural bound η(d + 1, 2)− 1 =
⌊( d+3

2

)2⌋− 1 for

d > 1. In this section, we prove Theorem 1.6, which gives a tight bound for the Leray
number of T1(K ), in the special case that K is 2-collapsible.

For the proof we will need the following Lemma:

Lemma 5.1 Let K be a2-collapsible complex on vertex set V . Letσ = {u, v} ∈ K such
that σ is contained in a uniquemaximal faceσ ∪U,whereU �= ∅. Letw ∈ V \(U∪σ).
Then,

H̃k (lk(K , v)[U ∪ {w}] ∪ lk(K , u)[U ∪ {w}]) = 0

for k ≥ 2.

Proof Let A = lk(K , v)[U ∪ {w}] and B = lk(K , u)[U ∪ {w}]. By Mayer–Vietoris
(Theorem 2.1), we have a long exact sequence

· · · → H̃k (A)
⊕

H̃k (B) → H̃k (A ∪ B) → H̃k−1 (A ∩ B) → · · ·

Since K is 2-collapsible, then, by Lemmas 2.6 and 2.7, A and B are also 2-collapsible.
In particular, H̃k (A) = H̃k (B) = 0 for k ≥ 2. Therefore, it is enough to show that

H̃k(A ∩ B) = 0

for k ≥ 1. If w /∈ A ∩ B, then

A ∩ B = 2U ,

and the claim holds. Otherwise, assume w ∈ A ∩ B. By Theorem 2.2, we have a long
exact sequence

· · · → H̃k ((A ∩ B) \ w) → H̃k (A ∩ B) → H̃k−1 (lk(A ∩ B, w)) → · · ·

Note that (A∩ B) \w = 2U ; hence, H̃k ((A ∩ B)\w) = 0 for all k. Thus, it is enough
to show that

H̃k (lk(A ∩ B, w)) = H̃k (lk(K , {v,w})[U ] ∩ lk(K , {u, w})[U ]) = 0

for k ≥ 0. Let

Z = lk(K , {v,w})[U ] ∩ lk(K , {u, w})[U ].

We will show that Z is in fact a complete complex.
Note that a set τ ⊂ U is a missing face of Z if and only if it is a missing face

of lk(K , {v,w})[U ] or a missing face of lk(K , {u, w})[U ]. Moreover, τ ⊂ U is a
missing face of lk(K , {v,w})[U ] if and only if there is some η ⊂ {v,w} such that
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τ ∪η is a missing face of K . Similarly, τ is a missing face of lk(K , {u, w}) if and only
if there is some η ⊂ {u, w} such that τ ∪ η is a missing face of K .

Assume for contradiction that Z contains a missing face τ ⊂ U of size at least two.
Recall that, since K is 2-collapsible, all the missing faces of K are of size at most 3.
Then, since U ∈ lk(K , {u, v}), τ must be of the form τ = {x, y}, where {x, y, w} is
a missing face of K .

Now, we look at the induced subcomplex L = K [{u, v, w, x, y}]. By Lemma 2.6,
L is 2-collapsible. It is easy to check that the missing faces of L are exactly the two
sets {u, v, w} and {x, y, w}. Then, we observe that lk(L, w) is a 1-dimensional sphere,
and that L \ w = 2{u,v,x,y} is contractible. Therefore, by applying Theorem 2.2, we
obtain H̃2(L) �= 0. This implies that L is not 2-Leray, which is a contradiction to L
being 2-collapsible. Hence, Z is a complete complex, and therefore H̃k (Z) = 0 for
all k ≥ 0. ��
Theorem 1.6 Let K be a 2-collapsible complex. Then, T1(K ) is 5-Leray.

Proof The proof is exactly the same as the t = 1 case of the proof of Theorem 1.5,
except that we replace the use of the Kalai-Meshulam bound (Theorem 2.4) by
Lemma 5.1. ��

6 Tolerance in Colorful Helly Theorems

The colorful Helly theorem is one of the most important generalizations of Helly’s
theorem. It was observed by Lovász, and first appeared in Bárány’s paper [2]. It asserts
the following.

Theorem 6.1 (Lovász, Bárány [2]) Let F be a finite family of convex sets in R
d , and

let F1,F2, . . . ,Fd+1 ⊂ F . If for every A1 ∈ F1, . . . , Ad+1 ∈ Fd+1, the family
{A1, . . . , Ad+1} has a point in common, then there is some i ∈ [d + 1] such that Fi

has a point in common.

Note that the colorful Helly theorem implies Helly’s theorem, by assuming allFi ’s
are identical. In [18, Theorem 4.4], a tolerant version of the colorful Helly theorem in
the plane was proved. It was stated in the special case d = 2, t = 1, but their argument
holds in general:

Theorem 6.2 (Montejano and Oliveros [18, Theorem 4.4]) Let F be a finite family of
convex sets in R

d , and let F1,F2, . . . ,Fd+1 ⊂ F . Suppose that every subfamily F ′
of F of size η(d + 1, t + 1) has a subfamily F ′′ ⊂ F ′ of size |F ′′| ≥ |F ′| − t such
that for any A1 ∈ Fi ∩ F ′′, . . . , Ad+1 ∈ Fd+1 ∩ F ′′, {A1, . . . , Ad+1} has a point in
common.

Then, there is some i ∈ [d + 1] such that Fi has a point in common with tolerance
t.

For completeness, we present a proof, closely following the argument presented in
[18] for the special case d = 2, t = 1.
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Proof of Theorem 6.2 Consider the hypergraph H whose vertex set is F and whose
edges are the subfamilies {A1, . . . , Ad+1}, such that Ai ∈ Fi for all i ∈ [d + 1], and
∩d+1
i=1 Ai = ∅.
By the assumption of the theorem, every subhypergraph of H consisting of η(d +

1, t + 1) vertices has covering number at most t . Therefore, by the definition of
η(d + 1, t + 1),H has covering number at most t . That is, there is a subfamily F ′ of
F of size |F ′| ≥ |F |− t such that every {A1, . . . , Ad+1} ⊂ F ′, where Ai ∈ Fi for all
i ∈ [d + 1], has a point in common. Therefore, by Theorem 6.1 (applied to the family
F ′), there is some i such thatFi∩F ′ has a point in common. Since |Fi∩F ′| ≥ |Fi |−t ,
Fi has a point in common with tolerance t . ��
Similarly as above, we observe that Theorem 6.2 implies Theorem 1.1, by assuming
all Fi ’s are identical.

As an application of our main results, we obtain new tolerant variants of the colorful
Helly theorem.

A family M of subsets of a non-empty set V is a matroid if it satisfies

(i) ∅ ∈ M ,
(ii) for all A′ ⊂ A ⊂ V , if A ∈ M then A′ ∈ M , and
(iii) if A, B ∈ M and |A| < |B|, then there exists x ∈ B \ A such that A ∪ {x} ∈ M .

The rank function of a matroid M on V is a function ρ : 2V → N such that for every
W ⊂ V , ρ(W ) equals to the maximal size of W ′ ⊂ W with W ′ ∈ M . Note that the
conditions (i) and (ii) allow us to regard a matroid M as a simplicial complex. The
colorful Helly theorem can be generalized topologically as follows.

Theorem 6.3 (Kalai and Meshulam, [10, Theorem 1.6]) Let K be a d-Leray complex
on V and let M be a matroid on V with rank function ρ. If M ⊂ K, then there exists
σ ∈ K such that ρ(V \ σ) ≤ d.

Taking K to be the nerve of the family F and M to be the matroid whose members
are the subfamilies ofF containing at most one member from eachFi , we can recover
Theorem 6.1 from Theorem 6.3.

By combining Theorem 6.3 with Theorems 1.5 and 1.6, we obtain the following
results.

Theorem 6.4 Let F be a finite family of convex sets in R
d , and let

F1,F2, . . . ,Fh(t,d)+1 ⊂ F . A subfamily F ′ ⊂ F is called colorful if there exists
a surjective map ϕ : [h(t, d) + 1] → F ′ such that ϕ(i) ∈ Fi for all i ∈ [h(t, d) + 1].

If every colorful subfamily of F has a point in common with tolerance t, then there
is some i ∈ [h(t, d) + 1] such that Fi has a point in common with tolerance t.

Theorem 6.5 LetF be a finite family of convex sets inR
2, and letF1,F2, . . . ,F6 ⊂ F .

A subfamily F ′ ⊂ F is called colorful if there exists a surjective map ϕ : [6] → F ′
such that ϕ(i) ∈ Fi for all i ∈ [6].

If every colorful subfamily ofF has a point in common with tolerance 1, then there
is some i ∈ [6] such that Fi has a point in common with tolerance 1.

Theorems 6.4 and 6.5 follow from Theorem 6.3 by a standard “duplicating ver-
tices" argument. For completeness, we include the proof of Theorem 6.5 (the proof of
Theorem 6.4 is essentially identical).
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Proof of Theorem 6.5 Let V = {(A, i) : i ∈ [6], A ∈ Fi }. Let π : V → F be the
projection π(A, i) = A. Let X be the simplicial complex on vertex set V whose
simplices are the sets σ ⊂ V such that π(σ) ∈ T1(N (F)). By Theorem 1.6, since
N (F) is 2-collapsible, T1(N (F)) is 5-Leray.

We will show that X is also 5-Leray. Indeed, let U ⊂ V . Let F ′ = π(U ) ⊂ F .
Then

X [U ] = {σ ⊂ U : π(σ) ∈ T1(N (F ′))}.

By [16, Lemma 2.14], X [U ] is homotopy equivalent to T1(N (F ′)), and in particular

H̃k(X [U ]) ∼= H̃k(T1(N (F ′))) = 0

for all k ≥ 5. Therefore, X is 5-Leray.
For i ∈ [6], let Vi = {(A, i) : A ∈ Fi }. The sets V1, . . . , V6 form a partition of V .

We define the partition matroid

M = {σ ⊂ V : |σ ∩ Vi | ≤ 1 for all i ∈ [6]}.

It is well known and easy to check that M is indeed a matroid, and the rank of a set
U ⊂ V is |{i ∈ [6] : U ∩ Vi �= ∅}|.

Note that for any maximal face σ of M , π(σ) is a colorful subfamily of F , and
therefore π(σ) ∈ T1(N (F)). So, σ ∈ X . That is, we have M ⊂ X . By Theorem 6.3,
there exists σ ∈ X such that the rank of its complement is at most 5. That is, there is
some i ∈ [6] such that Vi ⊂ σ . In particular, Vi ∈ X . This means that Fi = π(Vi ) ∈
T1(N (F)). In other words, Fi has a point in common with tolerance 1. ��

As a special case, we obtain the following colorful versions of a theorem of Nadler
[19].

Let H be a family of half-spaces in R
d . We say that H is a k-fold cover of R

d if
every point in R

d belongs to at least k half-spaces in H. We say that H is a minimal
k-fold cover if any proper subfamily H′ ⊂ H is not a k-fold cover.

Theorem 6.6 (Nadler [19]) Let N (k, d) be the maximum size of a minimal k-fold cover
of Rd by open half-spaces. Then N (k, d) is finite, and in particular N (k, 1) = 2k and
N (2, d) = �((d + 3)/2)2�.

Note that a family of half-spaces H1, . . . , Hm is a k-fold cover of R
d if and only if

their complements Hc
1 , . . . , Hc

m do not have a point in common with tolerance k − 1.
Therefore, it follows immediately from Theorem 1.1 that N (k, d) ≤ η(d + 1, k).
Similarly, we obtain from Theorems 6.4 and 6.5:

Corollary 6.7 LetH be a family of half-spaces in R
d , and letH1, . . . ,Hh(k−1,d)+1 ⊂

H such thatHi is a k-fold cover of R
d for all i ∈ [h(k − 1, d) + 1]. Then, there exists

φ : [h(k − 1, d) + 1] → H such that φ(i) ∈ Hi for all i ∈ [h(k − 1, d) + 1] and the
image of φ is a k-fold cover of R

d .
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Corollary 6.8 Let H be a family of half-planes in R
2, and let H1, . . . ,H6 ⊂ H such

that Hi is a 2-fold cover of R
2 for all i ∈ [6]. Then, there exists φ : [6] → H such

that φ(i) ∈ Hi for all i ∈ [6] and the image of φ is a 2-fold cover of R
2.

It may be interesting to try to find a direct combinatorial or geometric proof of
Theorems 6.4 and 6.5.
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