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Acute myeloid leukemia (AML) is a heterogeneous disease 
caused by distinctive mutations in individual patients; 
therefore, each patient may display different cell-type 
compositions. Although most patients with AML achieve 
complete remission (CR) through intensive chemotherapy, 
the likelihood of relapse remains high. Several studies 
have attempted to characterize the genetic and cellular 
heterogeneity of AML; however, our understanding of the 
cellular heterogeneity of AML remains limited. In this study, 
we performed single-cell RNA sequencing (scRNAseq) of 
bone marrow-derived mononuclear cells obtained from same 
patients at different AML stages (diagnosis, CR, and relapse). 
We found that hematopoietic stem cells (HSCs) at diagnosis 
were abnormal compared to normal HSCs. By improving 
the detection of the DNMT3A R882 mutation with targeted 
scRNAseq, we identified that DNMT3A-mutant cells that 
mainly remained were granulocyte-monocyte progenitors 
(GMPs) or lymphoid-primed multipotential progenitors 
(LMPPs) from CR to relapse and that DNMT3A-mutant cells 
have gene signatures related to AML and leukemic cells. Copy 
number variation analysis at the single-cell level indicated 
that the cell type that possesses DNMT3A mutations is an 

important factor in AML relapse and that GMP and LMPP 
cells can affect relapse in patients with AML. This study 
advances our understanding of the role of DNMT3A in AML 
relapse and our approach can be applied to predict treatment 
outcomes.

Keywords: acute myeloid leukemia, cancer genomics, copy 

number variation, DNMT3A R882, relapse, single-cell RNA 
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INTRODUCTION

Acute myeloid leukemia (AML) is a type of blood cancer in 

which abnormal immature cells accumulate in the bone mar-

row (BM) and interfere with normal function (Khwaja et al., 

2016). Although 60%-70% of patients with AML achieve 

complete remission (CR) through intensive chemotherapy, the 

likelihood of relapse remains high (Estey and Döhner, 2006). 

Various studies have attempted to determine the causes of 

relapse (Shlush et al., 2017; Vosberg and Greif, 2019; Yilmaz 

et al., 2019); however, further in-depth research is required 
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as each patient responds differently to treatment. AML is 

caused by DNA mutations in hematopoietic stem cells (HSCs) 

or progenitor cells during the early stages of hematopoiesis 

(DiNardo and Cortes, 2016; Yu et al., 2020). Although ge-

nome and transcriptome analyses have identified causes of 

drug resistance and therapeutic targets (Alanazi et al., 2020; 

Arindrarto et al., 2021; Tyner et al., 2018), our understanding 

of the cellular heterogeneity of AML remains poor.

	 Recent studies have used single-cell RNA sequencing 

(scRNAseq) (Choi and Kim, 2019) to determine the cell-

type composition in patients with AML and to identify cell-

type specific gene expression changes (Petti et al., 2019; van 

Galen et al., 2019). Although several single cell mutation 

analyses of AML have successfully measured clonal complex-

ity and the order of mutations during disease progression 

(Ediriwickrema et al., 2020; Li et al., 2023; Miles et al., 2020; 

Paguirigan et al., 2015; Pellegrino et al., 2018; Stetson et al., 

2021; Zhai et al., 2022), single-cell transcriptome analysis 

on sequential samples obtained at diagnosis (Dx), CR, and 

relapse (Rel) is required to distinguish cell-types harboring 

the mutations and to determine its effect on gene expression 

profiling in the cells.

	 DNMT3A (DNA methyltransferase 3 alpha) encodes meth-

yltransferase that methylates DNA (Okano et al., 1999) and 

forms a tetramer, regulating expression of genes involved 

in cell differentiation and development (Jia et al., 2007; Wu 

et al., 2012). The most common DNMT3A mutation, R882, 

blocks tetramer formation and inhibits enzymatic activity 

(Emperle et al., 2019; Russler-Germain et al., 2014; Yamashi-

ta et al., 2010). DNMT3A-mutant clones are considered as 

pre-leukemic (Dillon et al., 2021), as DNMT3A mutations 

that induce clonal hematopoiesis (CH) do not significantly 

affect the hematological phenotypes of normal individuals 

(Buscarlet et al., 2017) and DNMT3A mutations can persist 

after treatment during CR in AML patients (Garg et al., 2015; 

Jongen-Lavrencic et al., 2018). Nonetheless, CH with DN-

MT3A mutations is significantly associated with increased risk 

of hematologic malignancy (Genovese et al., 2014; Jaiswal 

et al., 2014), indicating that DNMT3A mutations occur in 

early stages of AML and eventually lead AML progression. 

In addition, studies showed that DNMT3A mutations are 

undetected during CR and reappears at Rel in some patients 

(Chien et al., 2017; Park et al., 2020), suggesting that DN-

MT3A-mutant cells can behave like leukemic clones. Indeed, 

studies demonstrated that Dnmt3a deficiency in mouse HSC/

progenitor cells lose their differentiation ability but displayed 

enhanced self-renewal, thereby affecting AML pathogenesis 

(Challen et al., 2012; Mayle et al., 2015). DNMT3A mutation 

also showed proliferation advantage in HSCs (Shlush et al., 

2014). Thus, further studies are required to elucidate the spe-

cific role of DNMT3A in AML relapse.

	 Here, we analyzed the single-cell transcriptome data of 

29 BM samples from healthy donors and AML patients with 

different disease stages (Dx, CR, and Rel) to continuously ob-

serve transcriptional and mutational changes. In addition, tar-

geted scRNAseq was performed to enhance detection of DN-

MT3A mutations. Our findings demonstrate that single-cell 

technology can dissect heterogeneity of HSCs and leukemic 

cells (LC) in AML and help elucidate the connection between 

AML relapse and DNMT3A mutation persistence in CR.

MATERIALS AND METHODS

Sample selection and cell preparation
Previously, we selected patients with DNMT3A R882 at the 

time of AML diagnosis with available BM samples (Ahn et al., 

2018) (informed consent obtained). This study was approved 

by the Institutional Ethics Review Board at Chonnam National 

University Hwasun Hospital (No. CNUHH-2014-083). The 

treatments and sampling times of each patient are detailed in 

Supplementary Table S1. BM-derived mononuclear cells (BM-

MNCs) were isolated from BM using density gradient centrif-

ugation in Ficoll.

Targeted DNA sequencing
Genomic DNA was extracted from cryopreserved BM samples 

using a QIAamp DNA blood mini-kit (Qiagen, USA) according 

to the manufacturer’s protocol. Targeted deep sequencing 

was performed on 83 genes with previously reported recur-

rent driver mutations (Ley et al., 2013; Papaemmanuil et al., 

2016). Agilent custom probes were designed to cover exons 

of the targeted genes and were sequenced using HiSeq 2000 

(Illumina, USA). Variants were called as reported previously 

(Ahn et al., 2018).

Single-cell RNA sequencing
Cells were prepared using a LUNA-FLTM Automated Fluo-

rescence Cell Counter (Logos Biosystems, Korea) according 

to the 10× Genomics Single Cell Protocols Cell Preparation 

Guide and the Guidelines for Optimal Sample Preparation 

flowchart (Documents CG00053 and CG000126, respec-

tively). Libraries were prepared using Chromium controller 

according to the 10× Chromium Next GEM Single Cell 3’ v3.1 

protocol (CG000315). Briefly, cell suspensions were diluted in 

nuclease-free water to achieve a target cell count of 10,000, 

mixed with master mix, and loaded into a Chromium Next 

GEM chip G with Single Cell 3’ v3.1 Gel Beads and Partition-

ing Oil. RNA transcripts from single cells were uniquely bar-

coded and reverse-transcribed within droplets. cDNAs were 

pooled and subjected to end repair, single ‘A’ base addition, 

and adapter ligation, before being purified and enriched us-

ing PCR to create the final cDNA library which was quantified 

according to the qPCR Quantification Protocol Guide (KAPA; 

Roche, Switzerland) and qualified using an 4200 TapeStation 

(Agilent Technologies, USA). Libraries were sequenced using 

a Hiseq platform (Illumina) according to the user guide.

Sequence alignment, quality control, clustering, and cell 
type annotation
FASTQ files were aligned to the human reference sequence 

(hg19) using CellRanger count pipeline (10× Genomics, ver. 

3.0.2). The output gene-barcode matrices were imported 

into Seurat R package (v3.2.1) for scRNAseq data analysis 

and visualization. Cells with nFeature_RNA < 200 or > 25% 

mitochondrial genes were filtered out. After low quality cells 

were removed, data were normalized using the Normalized-

Data function with “LogNormalize” and scale factor 10,000. 

Highly variable features were identified using the FindVaria-
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bleFeatures function with selection.method “vst”. Data were 

scaled using the ScaleData function. Once the Seurat objects 

of each sample were merged, batch effects were removed 

using the RunFastMNN function. Cells were clustered using 

FindNeighbors (reduction = “mnn”, dims = 1:30) with the 

FindClusters function (resolution = 1.8) based on the shared 

nearest neighbor. Datasets were visualized through non-lin-

ear dimensional reduction using Uniform Manifold Approxi-

mation and Projection (UMAP). To merge clusters with similar 

gene expression patterns, clusters were compared using the 

bimod test with the FindMarkers function (p_val_adj < 0.01, 

avg_logFC ≥ 1). Then, cluster pairs with < 10 differentially 

expressed genes (DEGs) were merged. Cluster cell types were 

annotated based on marker genes detected using the Find-

AllMarkers function (min.diff.pct = 0.3, log_fold change > 

0.25).

Identification of cell type composition
To compare cell type composition by sample or disease stage 

(control [CON], Dx, CR, and Rel), 34 cell types were classi-

fied into ten major groups: HSC; LC; CD36+ LC; GMP1 and 

GMP2 (GMP, granulocyte-monocyte progenitor); Promono, 

monocytes, macrophages and dendritic cells (DCs) (mono-

nuclear phagocyte system, MPS); EPC, pro-E to late ortho-E, 

and megakaryocyte (erythrocytes); lymphoid-primed multi-

potential progenitor (LMPP); pro B, B cells, and plasma cells 

(B cells); lymphoid cells, T cells, CD8 T, NK T cells, NK cells (T/

NK cells); and Unassigned. The number of cells per group 

was subdivided by the number of cells per sample or disease 

stage.

Gene module analysis
To compare the expression of gene modules related to HSC 

and erythroid differentiation at each disease stage, the total 

number of unique molecular identifiers (UMIs) of gene mod-

ule at each disease stage was normalized and log2 trans-

formed. Gene modules were determined using previously 

identified gene sets (Addya et al., 2004; Alanazi et al., 2020).

Differential expression analysis
DEGs between HSCs, LCs, mutant cells, and wild-type (WT) 

cells were identified using MAST, which uses a hurdle model, 

through the FindMarkers function of Seurat. DEGs (|log_fold 

change| > 0.1, P < 0.05) were visualized using a volcano plot. 

HSC and LC clusters were compared to identify cell type-spe-

cific DEGs; next, a new set of DEGs was obtained by compar-

ing each cluster to the remaining 33 clusters. The DEGs that 

overlapped in both DEG sets were displayed using a volcano 

plot. DNMT3A mutant and WT cells from AML samples (Dx, 

CR, and Rel) were also compared.

Gene set enrichment analysis (GSEA)
Enriched gene sets between two groups were identified us-

ing curated (c2) or ontology (c5) gene sets through GSEA 

(http://www.broadinstitute.org/gsea/index.jsp) with 1000 

permutations and the Signal2Noise metric for ranking genes. 

Gene sets > 500 or < 5 were excluded from analysis. Enriched 

gene sets were filtered using P < 0.05 and false discovery rate 

< 0.25.

Single cell gene regulatory network analysis
Transcription factor activity and gene regulatory networks 

were identified using SCENIC (v1.1.2-01) (Aibar et al., 2017) 

with HSC, LC, and CD36+ LC raw count matrices extracted 

from the Seurat object. Cells within each cell type were clas-

sified according to disease stage (CON and CR, or Dx and 

Rel). For motif ranking, 10 kb around the transcription start 

site (TSS) and 500 bp upstream of the TSS were selected. 

Potential transcription factor targets and gene regulatory net-

works were inferred using GENIE3: genes were filtered using 

the default geneFiltering function and the activity of each 

regulon group was scored using the AUCell package. Cell 

type-specific regulators were identified based on the regulon 

specificity score and visualized using pheatmap. A scaled reg-

ulon activity score was used to compare the log2 fold-change 

of regulon activity between cell types.

VirtualKO
Virtual knockout analysis was performed using scTenifoldKnk 

(Osorio et al., 2022). Ribosomal and mitochondrial genes 

were excluded from the raw count matrix of LC cluster, and 

only genes expressed in more than 5% of total cells were 

used for analysis. Gene functional annotation and enrich-

ment tests were performed using ‘Enrichr’ package (Kuleshov 

et al., 2016) with virtual KO perturbed genes. The results 

were visualized using ‘igraph’ package (https://github.com/

igraph/rigraph).

Targeted DNMT3A sequencing for scRNAseq libraries
To improve detection of the DNMT3A R882 mutation, PCR 

was performed on cDNAs with a cell barcode (CB) and a 

UMI, including those from all CR samples and the AML02-

Rel sample. We used primers that bound upstream of the 

mutation site (chr2:25457242 and 25457243) and to the 10

× Read1 sequence for CB and UMI (Supplementary Table S2). 

During amplification (29 cycles), different index sequences 

were added to the primers near the mutation site to distin-

guish samples. Amplified cDNAs from each sample were 

pooled to generate a sequencing library for MiSeq.

DNMT3A-mutant cell identification
To detect DNMT3A-mutant cells (chr2:25457242 C>T or 

25457243 G>T [for AML03]), sequencing reads with a map-

ping quality < 30 were filtered out and reads with both a CB 

and a Chromium molecular barcode were analyzed. For each 

read, DNMT3A-mutant cells were determined by identifying 

the mutation site and CB. Mutations were only identified 

in sequences in which the CIGAR string was M (alignment 

match). Cells with at least one read with mutations were 

labeled mutant cells. Those containing only reads without 

mutations were labeled WT cells.

	 Additional steps were required to identify mutant cells in 

the targeted sequencing data using only reads with both 

the 10× Read1 sequence and the sequence of the mutation 

site target primers. Reads with sequencing quality < 20 and 

those without a sample identification index sequence were 

filtered out. Only reads with a CB sequence matching the 

cells from the Seurat object were extracted. WT cells had a ‘G’ 

(chr2:25457242 C>T) or ‘C’ (AML03, chr2:25457243 G>A; 

http://www.broadinstitute.org/gsea/index.jsp
https://github.com/igraph/rigraph
https://github.com/igraph/rigraph
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CC47 chr2: 25457243 G>T) at the mutation site, whereas 

mutant cells had ‘A’ or ‘T’. Reads were discarded if any oth-

er base was found. Reads with the same UMI but different 

mutation site bases were also discarded. Cells with DNMT3A 

mutant reads were identified using their CB and sample index 

sequence. Because the number of mutation cover reads per 

cell was greatly improved in targeted sequencing compared 

to scRNAseq, the criteria for discriminating mutant cells were 

different from scRNAseq. Cells were labeled as mutant cells if 

they had more mutant reads than WT reads. We also labeled 

cells as mutant cells if the number of WT reads was less than 

1.5-fold the number of mutant reads.

Copy number variation (CNV) analysis
To determine the cell type of clonal origin from CR to Rel, 

chromosomal copy number alterations were identified using 

InferCNV (https://github.com/broadinstitute/inferCNV) (Patel 

et al., 2014) with the raw count matrix of gene-cell contain-

ing read counts extracted from the Seurat object. All cells 

from three control samples were used as a normal reference. 

Mitochondrial genes were excluded from gene ordering files. 

In AML01, stem/progenitor cell-types from CR and Rel cells 

were analyzed. In AML02, stem/progenitor cell types from CR 

and LC and LMPP from Rel were analyzed. Parameters: cutoff 

= 0.1, denoise = TRUE, HMM = TRUE, and cluster_by_grpups 

= TRUE or FALSE. Cell information of inferCNV outputs was 

identified using infercnvNGCHM.

Nanopore sequencing
To determine the DNMT3A mutation in three relapse-origin 

cells in AML02, we performed long-read Nanopore sequenc-

ing on the scRNAseq library. cDNAs from these three cells 

were amplified independently using primers designed for the 

10× Read1 sequence and CB (forward) and the DNMT3A 

mutation site (chr2:25457242 and 25457243; reverse). 

The MinION Kit protocol (SQK-LSK109; Oxford Nanopore 

Technologies, UK) was run for 43 m on a MinION sequenc-

ing device. Data were generated using MinKNOW 20.10.3 

software. Bases were called using Guppy (v.4.2.2) and se-

quenced reads were aligned to the human reference genome 

(hg19) using minimap2.

	 To call DNMT3A variants in relapse-origin cells in AML02, 

we used a custom python script in the pysam Python package 

with biobookshelf (https://github.com/ahs2202/biobook-

shelf). Reads with an average mapping quality < 60 or muta-

tion site base quality < 20 were filtered out. The mutation site 

base was identified in reads with a 10× Read1 sequence with 

a maximum allowed error rate of 0.2 (including substitutions, 

insertions, and deletions) and a CB for three cells with a max-

imum allowed error rate of 0.3. Reads with a mutation site 

base other than WT or mutation were filtered out. If both WT 

and mutant bases were identified in reads with the same CB 

and UMI, all reads with the same UMI were filtered out.

Trajectory analysis
Cells from relapsed patients were pseudotemporally ordered 

from CR to Rel using the Monocle R package (v2.14.0) (Trap-

nell et al., 2014): in AML01, GMP1 at CR and GMP1 and 

LC at Rel were analyzed, whereas in AML02, LMPP and HSC 

at CR and LMPP and LC at Rel were analyzed. CellDataSet 

objects for Monocle were created from raw count data using 

the newCellDataSet function (expressionFamily = negbino-

mial.size). The estimateSizeFactors and estimateDispersions 

functions were used to normalize mRNA differences across 

cells and analyze DEGs. Cells were ordered along a pseudo-

time trajectory using the reduceDimension and orderCells 

functions. Genes expressed in at least ten cells were used to 

identify DEGs that changed with pseudotime. Genes clus-

tered based on pseudotemporal expression were visualized 

using the plot_pseudotime_heatmap function. Gene ontol-

ogy analysis of biological processes was performed for highly 

variable genes at each stage using DAVID (Huang et al., 

2009).

Statistics and reproducibility
When comparing cell type composition by disease stage, the 

P value was determined by two proportion test using prop.

test function in R. In the Gene module analysis, P values were 

determined using the Wilcoxon rank-sum test, two-sided. All 

analyses are reproducible using raw data with Materials and 

Methods section.

Data sharing statement
The raw data was deposited in Korean Nucleotide Archive 

(KoNA; https://kobic.re.kr/kona) with the accession ID, PRJ-

KA220155.

RESULTS

Identification of cell compositions in BM samples from pa-
tients with AML
To explore the cellular heterogeneity in AML, BM-MNCs were 

obtained from three healthy donors and six patients with 

AML (Fig. 1A). During long-term follow-up (median, 9.2 

years), three patients with AML relapsed (AML01, AML02, 

and AML05) and 3 (AML03, AML04, and AML06) main-

tained CR after intensive chemotherapy. Samples were ob-

tained at the Dx, CR, and Rel stages from two patients who 

relapsed (AML01 and AML02). Dx and CR samples were ob-

tained from two non-relapse patients (AML03 and AML04). 

Only CR samples were obtained from the other patients 

(AML05 and AML06; Supplementary Table S1).

	 After removing low-quality cells, the remaining 59,440 cells 

were grouped into 34 clusters, annotated with marker genes 

(Figs. 1B and 1C, Supplementary Table S3). As some clusters 

were not shared between samples (Supplementary Fig. S1A), 

the 34 cell-types were divided into 10 larger groups for over-

all comparison of cell-type composition (Supplementary Fig. 

S1B). BM-MNCs from healthy donors (controls) had similar 

cell-type proportions; however, the cell-type composition 

differed significantly among patients with AML and among 

disease stages in the same patient. For instance, AML01 and 

AML02 had higher proportions of LCs and lower proportions 

of T/NK cells at Dx than at CR (nominal P < 2.2e-16 by two 

proportion test). At Rel, the proportion of LCs was higher 

than that at CR in both AML01 and AML02, but was similar 

to that at Dx in AML01 and remarkably lower than that at Dx 

in AML02 (LCs in AML02 CR: 0.4%, nominal P < 2.2e-16 by 

https://github.com/broadinstitute/inferCNV
https://github.com/ahs2202/biobookshelf
https://github.com/ahs2202/biobookshelf
https://kobic.re.kr/kona
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Fig. 1. Single-cell RNA sequencing (scRNAseq) analysis of patients with acute myeloid leukemia (AML) reveals differences in cell-type 

proportions with disease stage. (A) Schematic workflow of the study. BM-MNCs (bone marrow-derived mononuclear cells) collected 

from three healthy donors and six patients with AML at different disease stages (Dx, CR, and Rel) were subjected to scRNAseq. Control 

(CON), healthy donor; Dx, diagnosis; CR, complete remission; Rel, relapse. (B) UMAP visualization of total cells. Colors indicate 34 cell-

types. HSC, hematopoietic stem cell; LC, leukemic cell; GMP, granulocyte-monocyte progenitor; Promono, promonocyte; Mono, monocyte; 

cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell; EPC, erythrocyte precursor cell; Pro-E, proerythroblast; baso-E, basophilic 

erythroblast; Poly-E, polychromatophilic erythroblast; ortho-E, orthochromatic erythroblast; LMPP, lymphoid-primed multipotential 

progenitor. (C) Heatmap showing the expression of cell-type specific markers used for annotation. Each column represents a cluster (0-33). 

(D) UMAP visualization showing the composition of ten cell-type groups according to disease stage (CON, Dx, CR, and Rel). GMP, cluster 

3-4; MPS (mononuclear phagocyte system), cluster 5-13; Erythrocyte, cluster 14-20; B, cluster 22-24; T/NK, cluster 25-32. (E) Relative cell-

type proportion according to disease stage. Samples were grouped by disease stage, not by patient. The number above the graph indicates 

the percentage of the proportion. The Proportion percentage, which was less than 1%, were not indicated. (F) Dot plot showing expression 

of known AML marker genes (FCGR1A, IL1RAP, CDK6, STMN1, and KIT) between samples. Dot size represents the percentage of cells 

expressing the genes within the samples. Blue and white represent high and low expression, respectively.



616  Mol. Cells 2023; 46(10): 611-626  

Cellular Effects of DNMT3A Mutations in Leukemia
Seo-Gyeong Bae et al.

two proportion test). In addition, the cell compositions at Dx 

and Rel differed significantly from those at CON and CR (Figs. 

1D and 1E). The proportion of LCs was remarkably higher at 

Dx and Rel than at CON and CR, whereas the proportion of 

erythrocytes was lower at Dx and Rel (LCs at CON: 0.93%, 

erythrocytes in Dx: 0.46%, nominal P < 2.2e-16 by two pro-

portion test). The proportion of HSCs was the lowest at Rel 

(CON: 2.2, Dx: 8.7, CR: 3.0, Rel: 0.23%, nominal P < 2.2e-16 

by two proportion test). These results highlight the hetero-

geneity of AML at the cellular level and show the temporal 

dynamics of cell populations during AML progression.

	 We investigated whether disease stages could be repre-

sented by genes that are reported to be highly expressed in 

myeloid leukemia (Fig. 1F) (Handschuh et al., 2018; Landberg 

et al., 2016; Liu et al., 2021; Scolnik et al., 2002; Xu and 

Guo, 2020). These genes were identified via bulk RNAseq of 

BM and blood (STMN1, KIT, and CDK6), The Cancer Genome 

Atlas Program (FCGR1A and CDK6), or RNAseq of leukemic 

stem cells (KIT). The expression of IL1RAP, CDK6, and STMN1 

was upregulated at Dx and Rel, and downregulated at CR in 

AML01, but this pattern was not observed in other relapsed 

sample, AML02. FCGR1A expression was high at Dx and 

low at CR in AML04, but it displayed the opposite trend in 

AML03. Although KIT expression was slightly higher at Dx in 

AML02 and AML03, a small number of cells expressed KIT in 

other patients and at Rel in AML02, similar to the controls. 

The cell types commonly detected in all samples were HSCs, 

LCs, GMP2 cells, LMPPs, T cells, CD8 T cells, proliferating NK 

T cells, CIML (cytokine-induced memory-like) NK cells, and 

CD56 bright NK cells. We identified the expression of markers 

of these cell types in each sample (Supplementary Fig. S2A). 

The expression of genes in HSCs and LCs showed distinctive 

patterns at Dx and Rel in some patients. However, it was 

difficult to distinguish their expression between Dx and CR in 

most patients. This result showed that these genes known to 

be overexpressed in myeloid leukemia cannot distinguish dis-

ease stages with our data. We found some genes with con-

sistently higher expression at Dx and Rel than at CR. The ex-

pression of CLEC11A, HOMER3, FAM101B, and ATP8B4 was 

lower at CR than at Dx and Rel in all patients, although their 

expression was also low at Rel in AML02, probably because 

of the heterogeneity of patients with AML (Supplementary 

Fig. S2B). Analyses of the expression of these genes in LCs 

revealed that the expression of HOMER3, FAM101B, and 

ATP8B4 was also high at Rel in AML02 (Supplementary Fig. 

S2C). Although more data analysis and further experiments 

are needed for validation, we suggest these genes as markers 

that distinguish CR from Dx and Rel.

Transcriptional landscape of LC and HSC heterogeneity
HSCs and LCs were not only closely located in the UMAP pro-

jection, but also initially clustered together based on similar 

transcriptome patterns before being subclustered into HSCs 

and LCs. Although HSC and LC populations were close to 

each other, they exclusively expressed some of their cell-type 

specific markers (HSC markers: AVP and CRHBP; LC marker: 

CD99) (Figs. 2A and 2B). Interestingly, the proportion of HSCs 

was higher at Dx than at CON, whereas only a few HSCs 

were found at Rel. To determine whether HSCs at Dx differed 

from those at CON or CR, we compared the expression of 

HSC markers at each disease stage (Fig. 2C). HSCs showed 

the highest expression of HSC markers at CON; whereas 

at Dx, HSCs expressed CD34 but rarely expressed AVP and 

CRHBP. Furthermore, HSCs at Dx displayed decreased ex-

pression of genes related to erythrocyte development (GYPC, 

HBA1, HBA2, and HBB) compared to the CON and CR (Fig. 

2D, Supplementary Fig. S3A). These results suggest that de-

spite their abundance, HSCs at Dx in AML are abnormal.

	 We then characterized the transcriptome of LCs and HSCs. 

LCs are disease-specific cells that originate from progenitor 

cells. Studies comparing HSCs and LCs have been conducted 

previously to identify LC characteristics and find treatment 

targets (Eppert et al., 2011; Sachs et al., 2020; Schuurhuis 

et al., 2013; Thakral et al., 2023). We also aimed to identify 

differences in the transcriptome between HSCs and LCs. The 

DEGs between them included known markers (CD34 and 

AVP for HSCs; S100A10, CD99, and VIM for LCs; Supplemen-

tary Fig. S3B). Meanwhile, the GSEA revealed that gene sets 

related to lymphangiogenesis, Hedgehog and WNT signaling, 

and dedifferentiation were enriched in LCs (Supplementary 

Fig. S3C). As the HSCs at Dx were abnormal, LCs at Dx and 

Rel were further compared with HSCs at CON and CR. In 

the DEG analysis, similar genes were identified with DEGs in 

all HSCs and LCs, but the log2 fold-change value increased 

(Fig. 2E). In the GSEA, gene sets related to lymphangiogen-

esis, WNT signaling pathway, and pathway in cancer were 

enriched in LCs at Dx and Rel (Fig. 2F). In addition, gene sets 

related to NOTCH signaling, self-renewal, and leukemia were 

identified in addition to the terms obtained when comparing 

all HSCs and LCs (Supplementary Fig. S3D). Gene sets related 

to the differentiation of T cells and macrophage-derived foam 

cells and reversible differentiation were enriched in HSCs 

(Supplementary Figs. S3E and S3F).

	 Next, single-cell regulatory network inference and clus-

tering was used to identify gene regulatory networks in LCs 

compared with those in normal HSCs. The regulon activity of 

transcription factors (TFs) FOXC1 and CEBPA was higher in 

LCs at Dx and Rel than HSCs at CON and CR (Fig. 2G). CEBPA 

and FOXC1 also showed a higher regulon activity in HSCs at 

Dx and Rel than at CON and CR, suggesting that they may 

affect HSCs in patients with AML (Fig. 2H). Additionally, 

representative target genes of FOXC1 and CEBPA showed in-

creased expression in LCs at Dx and Rel compared with those 

in HSCs at CON and CR (Figs. 2I and 2J). We then performed 

virtual KO analysis of FOXC1 and CEBPA to assess their po-

tential effect on LCs (Supplementary Fig. S4). The results in-

dicated that they negatively regulate the expression of CD34 

and GYPC, which is involved in erythrocyte development, 

whereas they upregulate the expression of CD99 and malig-

nant tumor-related TF HOXB3 (Sauvageau et al., 1997). In 

addition, both FOXC1 and CEBPA regulate genes involved in 

the BDNF signaling pathway and prostaglandin biosynthesis, 

which are related to cancer cell migration, proliferation, and 

adhesion (Meng et al., 2019; Menter and DuBois, 2012).

	 To verify the presence of abnormal HSCs at Dx and to com-

pare the transcriptomes between HSCs and LCs, we analyzed 

a public scRNAseq dataset (GSE227903). As it is challenging 

to find only normal HSCs in the samples of patients with 
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Fig. 2. Transcriptional landscape of leukemic cells (LCs) and hematopoietic stem cells (HSCs). (A) Expression of known HSC and LC 

marker genes in HSC and LC. AVP, CRHBP, and CD34 for HSC, CD99 for LC. CON, healthy donor; Dx, diagnosis; CR, complete remission; 

Rel, relapse. (B) UMAP visualization showing the distribution of HSCs and LCs by disease stage. (C) Violin plot showing the expression 

of known HSC (AVP, CRHBP, CD34) and LC (CD99) marker genes in HSCs by disease stage. ***P < 0.001 by Wilcoxon rank-sum test 

using FindMarkers function. (D) Expression of HSC and erythrocyte differentiation gene modules in HSCs by disease stage. P values were 

determined using the Wilcoxon rank-sum test, two-sided. (E) DEGs (differentially expressed genes) in LCs at Dx and Rel vs HSCs at CON 

and CR. Red dots represent upregulated genes in LCs at Dx and Rel. Blue dots represent upregulated genes in HSCs at CON and CR. Black 

dots represent genes with a log2 fold change < 0.25. Known markers of each cell-type are shown in bold. (F) GSEA (gene set enrichment 

analysis) plots showing enrichment of cancer or stem cell associated gene sets in LCs at Dx and Rel compared to HSCs at CON and CR. 

NES, normalized enrichment score; P, P value; FDR, false discovery rate. (G) Heatmap showing the regulon activities of transcription 

factors (TFs) in HSCs, LCs, and CD36+ LCs divided by disease stage (Dx and Rel; CON and CR). Parentheses next to transcription factors 

indicate the number of target genes of the transcription factors. Red represents higher regulon activity. Red text indicates TFs that were 

overexpressed in LCs at Dx and Rel compared to HSCs at CON and CR. (H) Expression of the top two TFs in LCs at Dx and Rel compared 

to HSCs at CON and CR. (I and J) Violin plots showing the expression of the top six target genes of FOXC1 (I) or CEBPA (J) with higher 

expression in LCs at Dx and Rel compared to HSCs at CON and CR.
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AML, we analyzed these data together with our data of three 

healthy controls. First, HSCs and LCs were identified and 

changes in their cell proportion were examined at different 

disease stages (Supplementary Figs. S5A-S5C). Similar to 

results in our data, there were many HSCs and LCs at Dx, but 

HSCs at Dx rarely expressed AVP and CRHBP (Supplementary 

Fig. S5D). There were only a few HSCs at MRD (Supplemen-

tary Fig. S5C). These HSCs at MRD rarely expressed AVP and 

CRHBP, similar to HSCs from Dx (Supplementary Fig. S5D). 

DEGs between HSCs at CON and LCs at Dx and Rel included 

their marker genes, consistent with our results (Supplementa-

ry Fig. S5E). The GSEA results showed that gene sets related 

to the regulation of lymphangiogenesis, WNT signaling path-

way, and pathways in cancer were enriched in LCs at Dx and 

Rel compared with those in HSCs at CON (Supplementary 

Fig. S5F). In addition, FOXC1 and CEBPA were exclusively ex-

pressed in LCs at Dx and Rel (Supplementary Fig. S5G).

Identification of DNMT3A-mutant cell-types and signatures
Along with scRNAseq, targeted DNA sequencing was per-

formed to identify the DNMT3A variant allele frequency 

(VAF) at CR (Supplementary Table S4). Two relapsed patients 

(AML01 and AML05) and one non-relapsed patient (AML03) 

had low DNMT3A mutation frequencies at CR (Fig. 3A), 

whereas one relapsed patient (AML02) and two non-relapsed 

patients (AML04 and AML06) retained high DNMT3A muta-

tion frequencies at CR (>20%). To determine the difference 

between patients at CR with low and high VAF at the cellular 

level, DNMT3A mutations were called and cell-types were 

identified. As scRNAseq has dropout events in which a tran-

script is technically undetected despite its presence in a cell, 

this analysis has limitations when focused on a specific gene. 

We enhanced variant detection in individual cells by per-

forming targeted sequencing on scRNAseq libraries targeting 

DNMT3A R882 (Fig. 3B, Supplementary Table S2). Targeted 

scRNAseq data dramatically improved the number of reads 

covering DNMT3A R882 per cell (Fig. 3C, Supplementary Fig. 

S6A). Moreover, the number of cells covering the mutation 

site increased by 2-4 times (Supplementary Fig. S6B). DN-

MT3A VAF obtained from scRNAseq data were overall similar 

to those obtained from targeted DNA sequencing (Supple-

mentary Fig. S6C).

	 Having identified cells with DNMT3A R882, we investigat-

ed their distribution in each patient. As undifferentiated cells 

accumulate in AML, differentiated cell-types were grouped 

as mature cells to focus on stem/progenitor cell-types. As 

only CR samples were obtained from AML05 and AML06, 

changes in mutant cell distribution could not be identified in 

these patients. First, we analyzed changes in the distribution 

of DNMT3A-mutant cells from Dx to Rel in relapsed patients 

AML01 and AML02. In both patients at Dx, the fraction of 

DNMT3A-mutant cells was the highest in LCs (Figs. 3D and 

3E); however, the mutant LCs almost disappeared at CR and 

reappeared at Rel (Figs. 3D and 3E). In AML01, the propor-

tion of mutant GMP1s at Dx was also high and persisted at 

CR and Rel although the actual number of mutant GMP1s was 

low at CR (Figs. 3D and 3E). In AML01, the DNMT3A VAF 

decreased at CR and increased again at Rel, following a dy-

namic pattern similar to that of leukemic burden suggesting 

that mutant GMP1s remaining during CR may represent re-

sidual LCs. In AML02, the total number of DNMT3A-mutant 

cells at CR was similar to that at Dx and Rel (Fig. 3D). AML02 

had a high proportion of mutant LMPPs at CR compared to 

other patients, whereas mutant LMPPs were rarely present at 

Dx (Figs. 3D and 3E, Supplementary Figs. S7A and S7B) and 

persisted until Rel while spreading to adjacent LCs on UMAP 

(Fig. 3D). Thus, in a patient with persistent DNMT3A muta-

tion post-treatment, the DNMT3A mutation persisted mainly 

in a pre-leukemic state in LMPPs and mature cells.

	 Next, we examined the distribution of DNMT3A-mutant 

cells at Dx and CR in non-relapsed patients (AML03, AML04, 

and AML06). In AML03, there were similar proportions of 

mutant HSCs, LCs, and GMP1s at Dx; whereas at CR, mutant 

cells were mainly HSCs and monocytes, not GMP1s (Supple-

mentary Figs. S7A and S7B). Although AML04 and AML06 

had mutant LMPPs at CR, no mutant LMPPs were detected 

at Dx in AML04 as in AML02 (Supplementary Figs. S7A and 

S7B), suggesting that patients with a high DNMT3A VAF at 

CR (AML02, AML04, and AML06) may have a high propor-

tion of mutant cell-types not found at Dx, especially LMPPs.

	 Having distinguished mutant and WT cells through sin-

gle-cell sequencing, we investigated the specific cellular 

effects of DNMT3A mutation. The expression of LC markers 

(CD99 and CFD) and TFs with high activity in LCs (CEBPA and 

FOXC1) was upregulated in DNMT3A-mutant cells (Fig. 3F). 

Furthermore, the GSEA revealed that the mutant cells were 

enriched for gene sets related to AML- and NPM1-mutated 

signatures (Fig. 3G, Supplementary Fig. S7C). DNMT3A-mu-

tant cells were also enriched for AML relapse-related gene 

sets, such as AML relapse prognosis and reactome of RUNX1 

expression and activity, and showed higher expression of 

RUNX1 (Figs. 3F and 3G). These results suggest that DN-

MT3A mutant cells have gene signatures related to AML and 

LC maintenance and may therefore be involved in AML re-

lapse.

	 We then explored the distribution of DNMT3A-mutant 

GMP1s in more detail (Supplementary Fig. S8A). GMP1s 

were divided into three subclusters: progenitor marker 

(GATA2) high, myeloblast to promyelocyte stage gene 

(PRTN3) high, and proliferation marker (TOP2A) high (Sup-

plementary Figs. S8A and S8B). In AML01, three of the four 

DNMT3A-mutant GMP1s found at CR were in the progenitor 

marker high subcluster (Supplementary Fig. S8C); however, 

no mutant GMP1s were found at CR in AML03, a non-re-

lapsed patient with a low DNMT3A VAF at CR. To further ex-

plore the distribution of mutant LMPPs in patients with a high 

DNMT3A VAF at CR, we subclustered LMPPs into progenitor 

B cell marker (VPREB1) high and myeloid progenitor marker 

high (FLT3 and MPO) clusters (Supplementary Fig. S8D and 

S8E). Overall, the number of DNMT3A-mutant cells was the 

highest at CR in AML02 (relapsed) compared with that in 

AML04 and AML06, and DNMT3A-mutant cells were evenly 

distributed in LMPP subclusters (Supplementary Fig. S8F).

Identification of relapse-related clones in patients with re-
lapsed AML
As we identified the progenitor cell-types in which DNMT3A 

mutations persisted at CR in AML, we examined whether 
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Fig. 3. Identification of DNMT3A-mutant cell-type and signatures. (A) Targeted DNA sequencing results showing that AML02 (relapsed) 

and AML04 and AML06 (non-relapsed) have a high DNMT3A VAF at CR. AML, acute myeloid leukemia; VAF, variant allele frequency; CR, 

complete remission. (B) Simple description of targeted sequencing process. Single cell barcoded cDNAs were amplified using mutation 

site-specific primers and a custom Python script was used to identify DNMT3A-mutant cells with at least one mutant read. (C) Unique 

molecular identifiers (UMIs) per cell at the DNMT3A mutation locus from all CR samples and Rel samples from AML02. (D) Plot showing 

DNMT3A-mutant and wild-type (WT) cells projected onto the UMAP cluster from AML01 and AML02 according to disease stages. 

Red, DNMT3A-mutant cell; navy, DNMT3A WT cell; dark gray, no DNMT3A coverage. Red circle indicates the cell-type with the highest 

mutant-cell fraction at CR: GMP1 for AML01, LMPP for AML02. (E) Fraction of DNMT3A-mutant cells in each cluster at different disease 

stages in AML01 and AML02. Mutant cell fraction: number of mutant cells in each cell-type divided by the total number of mutant cells in 

each sample. Mature cell-types excluding stem/progenitor cell-types were merged. HSC, hematopoietic stem cell; LC, leukemic cell; GMP, 

granulocyte-monocyte progenitor; EPC, erythrocyte precursor cell; Dx, diagnosis; Rel, relapse; LMPP, lymphoid-primed multipotential 

progenitor. (F) DEGs (differentially expressed genes) between DNMT3A-mutant and WT cells in HSC of AML samples. Red dots indicate 

upregulated genes in DNMT3A-mutant cells. Blue dots indicate downregulated genes. Black dots indicate genes with a log2 fold change 

< 0.25. Genes of interest are marked in bold. (G) GSEA (gene set enrichment analysis) plots of unregulated gene sets in DNMT3A-mutant 

cells compared to WT cells. NES, normalized enrichment score; P, P value; FDR, false discovery rate.
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B

A

Fig. 4. Identification of clones involved in relapse in patients with relapsed acute myeloid leukemia (AML). (A and B) InferCNV 

heatmap of CR and Rel in AML01 (A) or AML02 (B). Top: cells grouped by cell-type labeled in different colors. Bottom: cells grouped 

according to CNV (copy number variation) patterns. Chromosomal copy number alterations (red, amplification; blue, deletion) inferred 

in each chromosomal location (columns) across cells (rows). Datasets from three healthy donors were used as a control. Partial enlarged 

view in bottom left shows LMPPs and HSCs at CR clustered with LCs at Rel in AML02. CR, complete remission; Rel, relapse; HSC, 

hematopoietic stem cell; LC, leukemic cell; GMP, granulocyte-monocyte progenitor; EPC, erythrocyte precursor cell; LMPP, lymphoid-

primed multipotential progenitor; WT, wild type.
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these cell-types lead to relapse by performing single-cell 

CNV analysis. An amplified region in chr19 was identified in 

GMP1s at CR in AML01 (Fig. 4A, top, black box), and GMP1s 

showed similar CNV patterns at Rel (Fig. 4A, top, green box). 

Some LCs were also amplified in a specific chr19 region at 

Rel similar to GMP1s at CR (Fig. 4A, top, blue box). As clones 

originated from the same cell have similar CNV patterns (Er-

ickson et al., 2022), we clustered cells based only on the CNV 

patterns to determine whether the LCs at relapse originated 

from cells at remission. Clustering according to CNV patterns 

revealed that some CR cells clustered with LCs at Rel (Fig. 4A, 

bottom, red box), including GMP1s, LCs, LMPPs, and CD36+ 

LCs (number of cells clustered with LCs at Rel, GMP1: 14, LC: 

7, LMPP: 3, CD36+ LC: 1). In particular, GMP1s had a similar 

CNV pattern at CR to LCs at Rel and clustered at the highest 

ratio, including some DNMT3A-mutant cells (2/14 GMP1). 

Thus, the DNMT3A-mutant LCs and GMP1s detected at Rel 

in AML01 may originate from GMP1s at CR (Fig. 5A).

	 In AML02, the CNV analysis identified a strongly amplified 

region in chr1 in LCs and LMPPs at Rel (Fig. 4B, top, green 

box) and in a few stem/progenitor cells at CR (Fig. 4B, top, 

blue and black box). However, most cells at CR had an am-

plified region in chr22 that was not found at Rel, suggesting 

that only some cells without chr22 amplification at CR could 

be relapse-origin cells. Therefore, we clustered cells based on 

CNV patterns to identify the CR cells that persisted and ex-

panded at Rel (Fig. 4B, bottom, red box). Almost all LCs and 

LMPPs at Rel clustered together with a few HSCs and LMPPs 

at CR owing to a similar CNV pattern (Fig. 4B, bottom, partial 

enlarged view), but did not include other CR stem/progenitor 

cells. Thus, the LCs and LMPPs at Rel in AML02 appear to 

originate from LMPPs and HSCs at CR (Fig. 5B).

	 As even targeted scRNAseq did not cover the DNMT3A 

R882 site in these cells, we performed additional targeted 

sequencing to confirm whether these cells had the DNMT3A 

mutation. The LMPPs and HSCs at CR with a CNV pattern 

similar to those of cells at Rel had both WT and mutant reads, 

confirming that they were DNMT3A-mutant cells (Fig. 5C). 

Thus, DNMT3A mutations were identified in LMPPs and HSCs 

in AML02 at CR (relapsed, high DNMT3A VAF in CR) that were 

not originally discovered at Dx, with CNV analysis confirming 

that these LMPPs and HSCs likely produce clones at Rel.

Identification of transcriptional changes from CR to Rel
From our results, we predicted that cells at relapse may orig-

inate from GMP1s and LMPPs at CR. Despite several AML 

studies, the progression from CR to Rel has not been fully elu-

cidated. Therefore, our aim was to identify the transcriptional 

changes that occur in cells as the disease progress from CR to 

cells at Rel, particularly LCs. In AML01, a relapsed patient with 

a low DNMT3A VAF at CR, transcriptional changes were ob-

served when GMP1s (containing relapse-origin cells) became 

LCs (Fig. 5D). As expected, GMP1s were ordered in trajectory 

from CR to Rel and finally to LCs. We selected CR cells with 

an earlier actual time as the starting point. At the trajectory 

starting point, DNMT3A-mutant GMP1s (relapse-origin) were 

identified. In AML02, a relapsed patient with a high DNMT3A 

VAF at CR, the trajectory started with LMPPs, which are in-

volved in relapse, at CR, and ended with LCs (Fig. 5E). In both 

cases, we identified highly variable genes along the trajectory 

and associated biological pathways. In AML01, the expres-

sion of genes associated with cell proliferation and transla-

tion decreased from GMP1s at CR compared with those at 

Rel and in LCs (Fig. 5F). Conversely, the expression of cell–
cell adhesion and VEGF receptor signaling pathway-related 

genes was upregulated as GMP1s proceeded to develop into 

LCs. In AML02, the expression of genes related to cell division 

and antigen presentation decreased, whereas that of genes 

related to transcription and cell–cell adhesion increased from 

LMPPs at CR to LMPPs at Rel and in LCs (Fig. 5G). In both 

relapsed patients, the expression of proliferation and cell 

cycle-related genes decreased during the early stages of pro-

gression from CR to Rel, whereas the expression of genes re-

lated to cell–cell adhesion and negative apoptotic regulation 

increased towards LCs, suggesting these biological pathways 

influence LC formation.

	 Finally, we analyzed scRNAseq data from six additional 

patients (Dx 6, CR 6, and Rel 2) to cross validate our results 

(Supplementary Fig. S9A). A comparison of LCs and HSCs in 

the additional data showed DEGs and gene sets similar to 

those identified in Fig. 2 such as Notch signaling and T cell 

differentiation (Supplementary Figs. S9B-S9D). Furthermore, 

a comparison between DNMT3A-mutant and WT cells con-

firmed that gene sets “AML relapse prognosis” and “AML 

with NPM1 mutated up” were enriched in DNMT3A-mutant 

cells (Supplementary Fig. S9E). Among the additional pa-

tients, two relapsed patients (CC47 and CC70) continued to 

show high in DNMT3A VAF at CR, similar to AML02. At CR, 

DNMT3A mutations in these patients were highly enriched 

in mature cells, but also detected in HSCs, LCs, progeni-

tors, GMPs and LMPPs (Supplementary Figs. S9F and S9G). 

Through CNV analysis, we confirmed that some progenitor 

cells in CC47 (number of cells clustered with LCs at Rel, pro-

genitor: 8, HSC: 1, EPC: 3, GMP1: 1, LMPP: 2, LC: 5) and 

HSCs and EPCs at CR in CC70 (HSC: 4, EPC: 6, progenitor: 3, 

LMPP: 8, LC: 9) had CNV patterns similar to those of LCs at 

Rel (Supplementary Fig. S10). Therefore, we expected that 

DNMT3A-mutant cells remaining in these cell-types during 

remission might be involved in relapse. This indicates that 

AML is highly heterogeneous among individuals.

DISCUSSION

AML is a heterogeneous disease caused by distinctive mu-

tations in each patient that may result in different cell-type 

compositions. In this study, using scRNAseq, we characterized 

the heterogeneity of HSCs and LCs in AML, examined their 

proportion changes in different AML stages, and identified 

the TFs that may govern the cell-type identity of HSCs and 

LCs. Moreover, we characterized the effect of the DNMT3A 

mutation in AML and its association with relapse. Targeted 

sequencing and CNV analysis at the single-cell level indicated 

that DNMT3A-mutant GMPs and LMPPs at CR could pre-

clude relapse in different ways.

	 Advances in single-cell technology have improved our un-

derstanding of heterogeneous AML at the cellular level (Edi-

riwickrema et al., 2020; Paguirigan et al., 2015; Pellegrino et 

al., 2018; Petti et al., 2019; Povinelli et al., 2018; van Galen 
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Fig. 5. Identification of transcriptional changes along the cell trajectory towards leukemic cells (LCs). (A and B) UMAP visualization of 

mutant cell-types in AML01 (A) or AML02 (B) showing the expected direction from CR to Rel. Star-shaped dots represent cells at CR with 

a similar CNV to LCs at Rel. AML, acute myeloid leukemia; CR, complete remission; GMP, granulocyte-monocyte progenitor; CNV, copy 

number variation; Rel, relapse; LC, leukemic cell; LMPP, lymphoid-primed multipotential progenitor; HSC, hematopoietic stem cell. (C) 

Integrative genome viewer of Nanopore sequencing reads for relapse-origin cells in AML02. Top: coverage of Nanopore sequencing for 

DNMT3A. Bottom: raw Nanopore sequencing reads mapped to mutation site in two LMPPs and one HSC. Yellow triangle indicates the 

position of DNMT3A 24257242. Wild type (WT) or mutation sites (DNMT3A 25457242) are indicated by color. Blue, WT (base: C); red, 

mutation (base: T); black, deletion; purple, insertion; white, non-covered region. (D and E) Trajectory analysis of LCs and cell-types, including 

relapse-origin cells in AML01 (D) and AML02 (E). GMP1 for AML01, LMPP for AML02. Arrow indicates the direction from CR cells to LCs at 

Rel. Star-shaped dots represent cells at CR with a similar CNV to LCs and LMPPs at Rel. (F and G) Heatmap of top 500 highly variable genes 

(rows) clustered based on the pseudotemporal expression pattern in AML01 (F) or AML02 (G). Bottom arrow indicates the direction from CR 

cells to LCs at Rel.
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et al., 2019). Droplet-based scRNAseq, can only sequence the 

3' end of transcripts and produces a sparse gene expression 

matrix, limiting the detailed analysis of mutation-harboring 

cells. To improve detection of the DNMT3A mutation, we 

performed targeted scRNAseq for DNMT3A. Several studies 

have noted that DNMT3A mutations increase with aging but 

has only limited biological impact in normal individuals (Bus-

carlet et al., 2017). However, we found that DNMT3A-mu-

tant cells were enriched for “AML relapse prognosis” and 

“AML with NPM1 mutated up”, consistent with a previous 

study that reported the frequent co-occurrence of DNMT3A 

and NPM mutations (Loghavi et al., 2014), as observed in the 

four patients in our study. Although it may not be surprising 

that mutant cells are rich in disease-associated gene sets, we 

could accurately identify the effects of DNMT3A mutations 

by comparing mutant cells to WT cells rather than comparing 

bulk levels in patients with and without DNMT3A mutations. 

In addition, DNMT3A-mutant cells had higher expression of 

RUNX1, which is involved in LC maintenance and negatively 

correlated with survival of AML patients, than WT cells (Na et 

al., 2020; Wesely et al., 2020).

	 Previous studies defined LCs based on several surface 

markers and compared LCs and HSCs to identify LC gene 

signatures (Chung et al., 2017; Heo et al., 2020; Jan et al., 

2011); however, we characterized LCs and HSCs using tran-

scriptome patterns. Although these known markers distin-

guished LCs from HSCs, there was another abnormal HSC 

subpopulation that expressed CD34 but not AVP and CRHBP, 

and genes related to erythropoiesis at Dx, which may explain 

the low proportion of red blood cells in AML. In addition, al-

most no HSCs were observed at Rel (Figs. 1E and 2B), consis-

tent with a previous report that HSCs decrease at Rel (Wang 

et al., 2017).

	 By comparing LCs with normal HSCs, we identified master 

TFs and their regulons in LCs including FOXC1 and CEBPA. 

FOXC1 is involved in the induction of cancer stem cell traits 

and tumor development (Cao et al., 2018; Han et al., 2017), 

while CEBPA is a critical TF for myeloid lineage differentiation 

(McKnight, 2001). Stem/progenitor cells with CEBPA down-

regulation display impaired myeloid differentiation (Lin et 

al., 2007; Pabst and Mueller, 2009; Radomska et al., 1998; 

Zhang et al., 2004). Meanwhile, the overexpression of CEBPA 

may exert oncogenic effects in precursor B acute lympho-

blastic leukemia (Chapiro et al., 2006). Based on our data, 

FOXC1 and CEBPA overexpression in AML may also affect LC 

maintenance or development.

	 Some studies have suggested that patients with DNMT3A 

R882 have a high probability of relapse (Yuan et al., 2016), 

while others have reported that DNMT3A R882 does not 

affect patient outcomes, even if the VAF remains high during 

CR (Bhatnagar et al., 2016). Here, we also had a case of re-

lapse with a very low DNMT3A VAF at CR (AML05) and cases 

with no relapse but a high VAF at CR (AML04, AML06; Fig. 

3A). Therefore, the specific mutant cell-type that persists at 

CR may play an important role in relapse. By analyzing muta-

tions and transcriptomes together at the single-cell level, we 

observed DNMT3A-mutant cell-types and their distribution 

according to AML disease stage. Notably, the changes in the 

distribution of mutant cells differed according to the DN-

MT3A VAF at CR. In the relapsed patient with a low DNMT3A 

VAF at CR, DNMT3A mutations were mainly found in LC and 

GMP1s at Dx and mutant GMP1s persisted until CR and Rel, 

although the frequency was lower at CR, indicating that DN-

MT3A-mutant GMP1s may be leukemic clones. Conversely, 

the relapsed patient with a high DNMT3A VAF at CR mainly 

had DNMT3A mutations in LMPPs that were not present at 

Dx but persisted until Rel, suggesting that DNMT3A-mutant 

LMPPs have pre-leukemic features at CR and eventually be-

come LCs at Rel. GMP1s and LMPPs are known to display 

functional similarities with leukemic stem cells (Goardon et 

al., 2011) and we confirmed that these mutant GMP1s and 

LMPPs contain clones that progress to Rel and that some 

GMP1s and LMPPs containing the DNMT3A mutation at CR 

can transform into LCs at Rel.

	 Together, our findings provide further insights into the 

heterogeneity of AML between individuals and during the 

clinical course of disease. Single-cell analysis revealed that 

DNMT3A-mutant GMP1s and LMPPs can affect relapse 

in patients with AML. Although the highly heterogeneous 

nature of AML requires analysis of more patient samples to 

generalize the results, our novel approach that identified crit-

ical cell-types involved in relapse can contribute to finding the 

cause of AML relapse.

Note: Supplementary information is available on the Mole-

cules and Cells website (www.molcells.org).
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