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ABSTRACT Memristive crossbar arrays have gained considerable attention from researchers to perform
analog in-memory vector-matrix multiplications in machine learning accelerators with low power and
constant computational time. This work introduces a comprehensive framework for co-designing the
software and hardware for deep neural networks (DNN) based on memristive and memcapacitive
crossbars while considering various non-idealities. The model takes into account device-level factors,
including conductance variation, cycle-to-cycle variation, device-to-device variation, peripheral circuits for
error/weight gradient computation, and high tolerance. The overall neural network performance is thoroughly
assessed by integrating these elements into a unified DNN training process. The proposed framework is
implemented using a hybrid approach with Python and PyTorch. Performance evaluation was conducted
using a simplified 8-layer VGG network on a measured 128 x 128 array with weight resolution. Remarkably,
the memristive and memcapacitive crossbar arrays achieved outstanding training accuracies of 90.02% and
91.03%, respectively, for the CIFAR-10 dataset. Additionally, detailed hardware estimation for both mem-
elements devices is provided, enabling meaningful comparisons with prior works.

INDEX TERMS Compute-in-memory, memristor, TIOx, memcapacitor, deep neural network, neuromorphic
system.

I. INTRODUCTION training, allowing for the realization of a highly integrated

Memelements [1], [2], [3] emerge as a highly promising class
of devices, notably exhibiting exceptional performance when
configured in a crossbar structure. The utilization of mem-
elements in crossbars brings about significant improvements
in the efficiency of vector-matrix multiplication (VMM) by
facilitating parallel products and summations of currents
flowing through the devices. Particularly in the context of
convolutional neural networks (CNN), which heavily rely
on extensive matrix operations during both training and
inference, a VMM architecture based on mem-elements
proves to be highly advantageous.

The integration of in-memory computing (IMC) archi-
tecture and the ability to tune analog memductance in
mem-elements further empowers power-efficient VMM and
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memory architecture. As a result, a myriad of CNN hardware
designs featuring mem-elements-based VMM accelerators
have been proposed [4], [5], [6], and their efficacy has been
impressively demonstrated.

The inherent challenge of resistive crossbars lies in their
limited ability to accurately approximate the essential VMM
required for optimal performance. For instance, in the process
of converting digital inputs into voltages and applying
them to the crossbar’s rows (programmed with weights as
conductances), the ensuing column currents are digitized
to yield digital outputs. However, a plethora of device and
circuit level nonidealities, such as driver resistance, sensing
resistance, sneak paths, interconnect parasitics, analog-to-
digital converter (ADC) and digital-to-analog converter
(DAC) nonlinearity, stochastic write operations, and process
variations, can introduce errors into the computed VMM [7],
[8], [9], [10], [11]. The presence of these imperfections can
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potentially impair the accuracy of a deep neural network
(DNN) implemented on a resistive crossbar system. While
DNN do exhibit some level of tolerance to calculation
imprecision [12], [13], [14] it is vital to acknowledge the
limitations of this resilience. Thus, a thorough assessment
of mem-elements crossbar nonidealities at the application
level becomes imperative to determine their suitability as
foundational components for DNN hardware.

Extensive research has been conducted on the influence
of memristor device non-idealities on neural network perfor-
mance. Existing modeling tools such as MNSIM [15] have
mainly emphasized the evaluation of system area and power,
potentially neglecting device variations and simplifying non-
idealities calculations. On the other hand, CrossSim [16]
considers more non-idealities from memristive devices but
overlooks non-idealities at the array and circuit levels.
Furthermore, its simulations are confined to a simple
perceptron using a small dataset, MNIST [17]. The IBM
Analog Hardware Acceleration Kit was introduced in [18],
incorporating memristive devices into memory computing
and PyTorch software simulation. However, the IBM toolkit
[18] does not assess the hardware chip’s runtime, latency,
and power performance. While [19] utilized certain hardware
constraints for software simulation, it remained quite limited
in scope. An open-source framework for memristive deep
learning systems is introduced in [20] and [21], addressing
device-to-device variability and failures. Additionally, [22]
provides a comprehensive overview of various simulation
frameworks, offering detailed comparisons and insights into
future modeling and simulation strategies and approaches.
In [23], the introduction of capacitor-based synaptic devices
is accompanied by experimental validation of their VMM
function. Similarly, [24] focuses on the advancement of
non-volatile capacitive devices through the utilization of
ferroelectric HZO, culminating in the construction of a cross-
bar array tailored for in-memory computing applications.
The prominence of capacitor-based IMC SRAM [25] lies in
its remarkable energy efficiency within deep convolutional
neural networks (DCNN), albeit with a reliance on SRAM
for computation in addition to capacitive devices. Despite
the limited body of research in memcapacitive-based IMC,
noteworthy strides have been taken in the realm of software-
hardware design. This field, however, is not void of progress.

Currently available tools do not possess the necessary
capability to accurately model nonuniform conductance and
capacitance distributions in memristive and memcapacitive
crossbar arrays. Additionally, they often overlook or over-
simplify array level non-idealities, such as line resistance
and sneak path effects, in VMM simulations due to the
computational complexity involved. This work explores
nonideal properties crucial for in-situ training accuracy,
including nonlinearity, asymmetry, device-to-device, and
cycle-to-cycle variations. Consequently, there is a compelling
need for a fast and accurate modeling and simulation tool
that comprehensively evaluates neural network performance
on memristor and memcapacitor crossbars. VMM acceler-
ators leverage supplementary peripheral circuits for error
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calculation and weight gradient computation during on-chip
training.

In this research, we extended the NeuroSim framework
to support the evaluation of on-chip training performance
in compute-in-memory (IMC) accelerators. The framework
is implemented using a hybrid approach with Python and
PyTorch CUDA together, incorporating an accurate VMM
computation core [26]. The performance of our proposed
framework was validated by implementing a simplified 8-
layer VGG network with a 128 x 128 TiOx-based memristive
and a Silicon (Si)-based memcapacitive crossbar array, both
derived from hardware data. The results demonstrated an
impressive 90.02% and 91.03% inference accuracy with
memristive and memcapacitive crossbar array on the CIFAR-
10 dataset. Our proposed method offers a potential solution
for holistically evaluating neural network performance and
highlights the feasibility of utilizing TiOx based memristive
and Si based memcapacitive crossbars for DNN applications.

The article is structured as follows: In Section II, the
NeuroSim framework structure for IMC based on mem-
elements is introduced, along with detailed explanations
of the architectures supporting feedforward and back-
propagation computation in deep CNN. In Section III, the
impact of non-idealities, sneak paths, and information about
peripheral circuits is presented. Section IV discusses the
benchmark and hardware results of IMC accelerators for on-
chip training, providing a detailed comparison with previous
works. Finally, Section V concludes the paper.

Il. PROPOSED FRAMEWORK DESIGN
A. IMC MAPPING ALGORITHM
In this approach, the weights of each kernel are intelligently
divided into sub-matrices based on their spatial locations,
resulting in KxK sub-matrices with a size of DxN. This
division leads to a total weight matrix size which is kernel
of KxKxDxN, as shown in Fig. 1. Simultaneously, the
input data assigned to various spatial locations within each
kernel is routed to the corresponding sub-matrices. Through
parallel computation, partial sums are derived from these sub-
matrices. These partial sums are then efficiently aggregated
using an adder tree. By doing so, a processing element (PE) is
defined as a group of sub-arrays equipped with essential input
and output buffers, along with accumulation modules. The
kernels are divided into multiple PEs based on their spatial
locations, allowing the input data to be assigned accordingly.
This strategic division of kernels and input data enables the
reusability of input data among PEs, removing the need to
revisit upper-level buffers. Consequently, a direct transfer
of input data between PEs is facilitated, streamlining the
processing flow, and optimizing computational efficiency.
The chip hierarchy is organized into several tiles, each of
which houses processing elements (PEs) along with synaptic
sub-arrays, accumulation modules, and output buffers. The
transfer of inputs/activations from one memory array to
another is facilitated by interconnects within each tile.
In terms of the assumed interconnect topology, using an
H-tree structure for routing within each hierarchy implies
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FIGURE 1. The architecture of the convolutional layer and fully connected layer integrated with memristor and memcapacitor crossbars,

accompanied by the flowchart of the proposed framework.
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FIGURE 2. The simplified 8-layer VGG network comprises 6 convolutional layers and 2 fully connected layers.

that the interconnections within individual tiles adhere to
an H-tree topology. Each layer functions as an individual
pipeline stage, and the system clock cycle for the pipeline
is determined by the longest latency observed among all the
layers. This setup implies that the layers are sequentially
processed in a pipelined manner, where the output of one
layer serves as the input to the subsequent layer. The
framework employs an off-chip offloading model where a
portion of the neural network layers is loaded into on-chip
memory arrays while the remaining layers are stored in off-
chip memory. Offloading entails transferring these layers
between on-chip and off-chip memory, resulting in potential
performance and power overheads. We have yet to develop
a comprehensive analysis of the performance and power
overheads associated with offloading, but we are actively
working on it to obtain all the necessary details. Nevertheless,
the offloading process would introduce additional latency and
energy consumption due to the data transfer between on-chip
and off-chip memory.

NeuroSim efficiently calculates the weight-matrix size for
each layer in the pre-defined network structure using the
weight mapping method. The process of iteratively reducing
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the matrix size involves the following sequence of actions:
Initially, the tile size is configured to accommodate the largest
weight matrix among all layers. Subsequently, the framework
calculates memory utilization by dividing the memory
mapped by synaptic weights by the total chip memory.
The tile size is then gradually decreased while monitoring
its impact on memory utilization. The aim is to achieve
optimal memory utilization. This stepwise reduction in tile
size contributes to refining memory allocation for improved
efficiency. The weights are programmed using the conduc-
tance of the memory devices. When input vectors are encoded
using read voltage signals, the weighted sum operation is
performed in parallel, resulting in currents at the end of each
column. The read voltage applied at the input of transmission
gates passes through the WL, and the parallel readout of
weighted sums occurs through the BL. In cases where input
vectors are larger than 1 bit, encoding necessitates multiple
clock cycles. The network employs a unit cell arrangement,
and for encoding the inputs, 8 bits are used. This choice is
influenced by the nature of the CIFAR-10 dataset used in the
experiments, which comprises 32 x 32 x 3 = 3072 input
features. Utilizing lower bit resolutions for encoding inputs
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FIGURE 3. Crossbar structure defined in the simulator using (a) memristor device, and (b) memcapacitor devices. Measured memductance
data of the (c) memristor device with TiOx material, (d) memcapacitor device with Si material.

would likely result in a degradation of network accuracy.
In cases where negative inputs are encountered, they are
encoded using the two’s complement representation. In this
representation, a negative value is represented by taking
the complement of its positive counterpart and adding 1.
Subsequently, the corresponding output is decoded using the
same two’s complement representation method.

Fig. 3 (a) and (b) depicts a typical design of a memristive
and memcapacitive crossbar array utilized for realizing
VMM. The design comprises a 2-D array of synaptic devices,
digital-to-analog converters (DACs), analog-to-digital con-
verters (ADCs), and write peripheral circuitry. As proposed
in the framework [27], the NeuroSim core is enveloped by
Python and PyTorch, allowing for the facilitation of flexible
network topologies. The model used is 8 layer VGG network
for CIFAR-10. However, the framework also supports larger
models such as ResNet, AlexNet, GoogleNet, or users have
the option to define arbitrary CNN topologies.

B. MEMRISTOR AND MEMCAPACITOR BASED VMM
ACCELERATOR

Fig. 3 (a) and (b) depicts a typical design of a memristive and
memcapacitive crossbar array utilized for realizing VMM.
This framework comprises two parts: one implemented in
Python and the other in PyTorch CUDA. For the evaluation
of metrics such as nonlinearity, asymmetry, device-to-device
variation, cycle-to-cycle variation, IMC area, latency, and
energy. To assess the area, latency, dynamic energy, and
leakage associated with interconnects, we assume that
routing among modules within each hierarchy follows an
H-tree structure. The latency and energy breakdown analysis
reveals that, due to substantial on-chip data transfer, the
primary bottlenecks are buffer latency and DRAM energy
consumption. The estimated training dynamic energy per
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epoch amounts to 108.36 J, while the training latency
per epoch is calculated at 104.31 sec. Although the paper
mentions using mem-elements-based IMC arrays for weight
gradient computation, it does not explicitly specify the exact
on-chip storage capacity required for storing intermediate
results or facilitating routing to multiple arrays. The size of
the on-chip storage would be contingent upon factors such
as the neural network’s dimensions and the nature of the
operations being conducted.

We consider six convolutional layers and two fully
connected layers, each serving as dedicated computation
units designed specifically for weighted sum and weight
update operations as shown in Fig. 2. In the forward
convolutional layer, the analog weights are initially mapped
to memductance, with the line resistance serving as the
memductance weight. The input data is then fed from
the input layer and travels forward through a series of
weighted sum operations and neuron activation functions
until reaching the output layer. In the fully-connect layer,
a similar process occurs, where the analog weights are first
mapped to memductance. The VMM is performed on the
input vector with the crossbar array assigned weights. During
back-propagation, the error is propagated backward from the
output layer to adjust the weights of each layer, minimizing
the prediction error.

In the backpropagation step, there are two VMM steps.
First, multiplying the weight matrix with gradients. It can
be inferred that the second Vector-Matrix Multiplication
(VMM) is executed by retrieving the activations from off-
chip memory and then multiplying them with the gradients.
When computing weight gradients, activations are fetched
from off-chip memory and conveyed to on-chip buffers
before reaching the weight gradient computation units.
This implies that the activations are present in on-chip
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FIGURE 4. Device structure (a) TiOx-based memristor device (b) Si-based
memcapacitor device.

buffers and can thus be employed for the second VMM
operation.

The TiOx memristive device characteristics encompass
operational yield and uniformity, symmetrical analog switch-
ing, functional stability, and adjustable learning rates. The
TiOx memristor array achieves a remarkable operational
yield exceeding 99%, displaying exceptional uniformity in its
switching threshold. Its symmetrical analog switching behav-
ior enables both conductance potentiation and depression,
essential for implementing synaptic functions in artificial
neural networks. Notably, the device exhibits high functional
stability, maintaining repeatability over 3000 programming
cycles and remaining operational for six months. In essence,
the TiOx memristive device showcases reliable symmet-
rical analog switching traits, operational uniformity, and
functional stability, rendering it a promising candidate for
effective in situ training within neuromorphic computing
systems [1]. Fig. 4 (a) illustrates the device structure and
image of a TiOx memristor [1]. This memristor features a
crossbar array with nodes based on TiOx. The individual
memristor cells are positioned at the intersections of Al
electrode lines on a glass substrate, with each Al electrode
line having a width of 100 pm.

The characteristics of the Si memcapacitive device,
as described in [2], make it well-suited for neuromorphic
computing applications. Notable features include a high
dynamic range, which enables precise analog signal process-
ing, and low power operation through adiabatic charging,
enhancing energy efficiency. The device’s scalability down
to around 45 nm and its crossbar array architecture further
support its integration into compact and energy-efficient
neuromorphic systems. This architecture facilitates parallel
multiply-accumulate (MAC) operations, ideal for neural
network training and pattern recognition tasks. Overall,
the Si memcapacitive device’s dynamic range, low power
operation, scalability, and crossbar array structure position
it as a promising choice for energy-efficient neuromorphic
computing systems [2]. The Si memcapacitive device com-
prises a layered structure with a gate electrode, shielding
layer, and readout electrode. The gate electrode applies
input signals, and the readout electrode reads accumulated
charge. The shielding layer between them significantly
affects capacitance modulation. The device structure includes
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alateral pin junction and electron and hole injection, depicted
in Fig. 4 (b).

The expected relationship between weight increase long-
term potentiation, (LTP) and weight decrease long-term
depression, (LTD) should be linearly dependent on the num-
ber of write pulses. However, real-world devices, as described
in existing literature, often deviate from this ideal trajectory.
In practice, the memductance tends to undergo rapid changes
during the initial stages of LTP and LTD, eventually reaching
a saturation point, as depicted in Fig. 3 (¢) and (d) for
TiOx-based memristive and Si-based memcapacitive devices,
respectively.

For the TiOx-based memristive VMM [1] and, X;1p and
Xrrp represent the conductance values for LTP and LTD,
respectively and the following are the equations:

Xurp =B(1 —e(‘ﬁ)) + Xomin (1)
Xirp = —B (1 _ e("_i"“‘)) X P
B = Xmax — Xmin/1 - e(ip/gnax) 3)

Similarly, the equations mentioned above can be applied to
the Si-based memcapacitive VMM [2]. In this scenario, X[ Tp
and Xpp denote the capacitance values associated with LTP
and LTD, respectively.

The parameters Xmax, Xmin, and Pmax are directly obtained
from experimental hardware data and correspond to the max-
imum conductance and capacitance, minimum conductance
and capacitance, and the maximum pulse number needed
to switch the device between its minimum and maximum
conductance states. The parameter A governs the nonlinear
behavior of weight update and can be either positive (blue)
or negative (red). In Fig. 3 (c) and (d), both LTP and
LTD have the same magnitude but opposite signs for the
parameter A. B, on the other hand, is a function of A
designed to fit the functions within the range of Xmax, Xmin,
and Ppax.

Ill. IMC RESULTS WITH NON-IDEALITIES

This section focuses on investigating nonidealities in mem-
ristive and memcapacitive crossbars and analyzing how they
affect VMM.

A. CROSSBAR AND DEVICE NONIDEALITIES

Due to fabrication imperfections, non-ideal behaviors are
observed in memristor and memcapacitor devices. These
include variations in conductance, capacitance, device-
to-device (D2D), and cycle-to-cycle (C2C), as well as
nonlinearity and programming failure [28]. Consequently,
it is crucial to consider nonuniformly distributed levels and
conductance variations in the simulation of DNN. Devices
are assigned to different levels based on the conductance and
capacitance distribution in the crossbar array to assess the
degradation of training accuracy under nonideal properties.
The nonlinearity and asymmetry model can be represented by
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equations 1 to 3. The parameter A determines the degree of
nonlinearity in weight update, with a value range of (0, +o00),
where smaller A values indicate a more nonlinear weight
update behavior. The device’s conductance is programmed
from a high resistance state (HRS) to a low resistance state
(LRS) and shown in Fig. 7 for the memristive device. It is
crucial to emphasize that while the failure mask undergoes
updates in each programming cycle, the stuck mask remains
unchanged throughout both training and inference. This is
due to the inability to fix stuck devices, resulting in their fixed
position after array testing.

In the weight update process, D2D variation leads to
varying nonlinearities in different synaptic devices. To create
a behavior model, we randomly generate the nonlinearity
factors for different synaptic weights, using a standard
deviation (o) with respect to the mean nonlinearity value (u).
The results depicted in Fig. 5 (a) highlight the significant
impact of device variation, showcasing the remarkable
accuracy maintenance achieved by our proposed method
using both devices. To investigate the effects of C2C
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variation, we created a behavior model similar to the one used
for device-to-device variation. C2C variation pertains to the
variability in conductance change with each programming
pulse. As shown in Fig. 5 (b) C2C variation does not
degrade the performance of the system. Therefore, we can
represent the cycle-to-cycle variation standard deviation (o)
as a percentage of the entire weight range.

In an ideal scenario, currents in resistive crossbars should
flow from left to right along the rows and from top to
bottom through the columns. Nonidealities, including wire
resistances, cause variations in the actual voltage across the
memristor and memcapacitor VMM accelerator, resulting in
a lower voltage than the theoretical value. This reduction
is due to the accumulated voltage drop on the connecting
traces and sneak pathways [29]. The presence of line
resistance and sneak paths impacts the training accuracy of
the model, as depicted from Fig. 6. In our results, we observed
that the training accuracy of both VMM approaches is
more significantly influenced by the line resistance than
by the variations between individual devices and cycles.
This suggests that the impact of line resistance plays a
more prominent role in affecting the training accuracy
compared to the inherent variability between devices and
cycles.
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B. PERIPHERAL CIRCUITS

The VMM employs various peripheral circuit modules,
including a switch matrix, multiplexer, adder, shift register,
driver, and ADC [27]. In this framework, these peripheral
circuits are designed using transistor parameters directly
extracted from the TSMC 22-nm PDK, as shown in Fig. 8,
and specifically set in the NeuroSim transistor library. These
parameters encompass device W/L, supply voltage (Vpp),
threshold voltage (VTg), gate and parasitic capacitance, and
NMOS/PMOS on/off current density. By utilizing these
parameters, the area and intrinsic RC/power model of
standard logic gates can be analytically calculated using
specific formulas, as discussed in prior works. This enables
the estimation of performance metrics for each sub-circuit.
The transistor W/L for the ADC, multiplexer, switch matrix,
and drivers are predefined based on the required drivability,
while the transistor W/L for other logic gates is set at a
fixed size. The capacitances at the logic gate level are also
improved, and their transistors’ sizing is known. This allows
for the calculation of T = RC and CV%D to estimate module
delay and dynamic energy consumption.

Switch matrices are vital components that facilitate fully
parallel voltage input to the rows or columns of the
array. These matrices are composed of transmission gates
connected to all the bit lines (BLs), with their control
signals stored in registers. The traditional crossbar word
line (WL) decoder has been modified to activate all the
WLs, making all the transistors transparent for weighted
sum. This enhanced crossbar WL decoder integrates follower
circuits into each output row of the conventional decoder.
Additionally, a multiplexer is employed to distribute the
read periphery circuits among the synaptic array columns,
optimizing the utilization of resources as the array cell size is
significantly smaller than the size of read periphery circuits.
Placing all the read periphery circuits at the edge of the array
would not be area efficient. Hence, the multiplexer efficiently
addresses this challenge.

We have incorporated quantization noise for the ADC.
To address the potential effects of ADC truncation on partial
sums, we adopt a nonlinear quantization approach utilizing
several quantization edges, each indicative of different levels
of ADC precision. These edges are determined based on
the distribution pattern of partial sums. Currently, we have
not incorporated a read noise model. However, we intend to
incorporate such a model in future endeavors.

The CMOS transistor parameters are extracted from
TSMC’s PDK and integrated into the Framework. Com-
ponents like current sense amplifiers (CSA), voltage sense
amplifiers (VSA), level shifters, and switch matrices are real-
ized using these CMOS parameters. However, achieving the
same training accuracy in the hardware implementation may
be challenging due to factors like fabrication mismatches,
ambient noise, and other variables that can impact system
performance.

The current sense amplifier (CSA) as shown in Fig. 8
(a) serves to amplify and convert small current signals into
voltage signals, a critical function in precise analog-to-digital
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TABLE 1. DNN neurosim experiment hardware configurations.

Configuration Value
Operation mode Conventional Parallel
ADC Precision S-bit

Crossbar Size 128x 128

Clock Frequency 10°

Temperature 300 K

Roff (Q) 25 x 106

Ron (Q) 10°

Coff (C) 30x 1012

Con (C) 2x 10712
Device Type Memristor, Memcapacitor
Technology 22 nm

conversions within flash-ADCs. Fig. 8 (b) shows the voltage
sense amplifier (VSA) plays a pivotal role by amplifying
and converting minute voltage signals into digital outputs,
essential for accurate conversion of analog voltages in ADCs,
particularly in flash-ADCs. Additionally, a level shifter
functions as a peripheral module facilitating translation of
signal voltage levels across different logic domains as shown
in Fig. 8 (c). This ensures seamless communication and signal
compatibility among various parts of integrated circuits
operating at diverse voltage levels. Lastly, in Fig. 8 (d) the
successive approximation register (SAR) ADC operates by
employing a binary search algorithm to determine the digital
representation of analog input signals. Through iterative
adjustment of the digital output, the SAR ADC converges
to the closest digital representation of the input signal,
making it suitable for various applications due to its moderate
conversion speed and relatively low power consumption. The
active blocks in the design operated at 1.1 V for VDD. Level
shifters were incorporated into the design, particularly for the
WL (Word Line), BL (Bit Line), and SL (Sense Line) signals
within the crossbar array. These level shifters were employed
to convert the voltage levels of these signals to the necessary
levels essential for the correct functioning of the crossbar
array.

To extract and process partial sums for subsequent logic
modules, a group of flash-ADCs with multilevel successive
approximation (S/A) using varying references is employed
at the end of the synaptic lines (SLs) to produce digital
outputs. In the simulator, a conventional current-sense-
amplifier (CSA) based on transistor is utilized as the unit
circuit module for building the multilevel S/A, as depicted
in Fig. 8 (a). At the bottom of the synaptic core, an adder and
shift register pair are utilized to execute shift and addition
operations on the weighted sum result during each input
vector bit cycle, resulting in the final weighted sum. The
bit-width of the adder and shift register may need to be
extended based on the precision requirements of the input
vector.

IV. HARDWARE RESULTS OF IMC

In this section, we examine detailed analysis for accuracy,
area, throughput, and energy efficiency with our Python
framework designed to evaluate large-scale memristive and
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TABLE 2. Comparison with prior works.

This Work [30] 31] 132] 33] 34] 35]
. Memristor Memcapacitor s Digital . HZO
Device (TiOn) sh Ag:a-Si Renar  EpiRAM FeFET PCMO  AIOJ/HfO,
Network Structure VGG-8 VGG BNN-9 VGG-8 VGG-8 VGG-8 VGG-8
Crossbar Size 128 x 128 128 x 128 128 x 128 784x300 128 x 128  128x 128 128 x 128
# of Conductance 32 97 ) 64 32 50 40
States
ADC precision 5-bit 6-bit - 6-bit 6-bit 6-bit 6-bit
Weight/ Cell 5-bit/ 1-bit 6-bit - 6-bit 5-bit 5-bit 5-bit
precision
Ron (Q)/Con (C) 10%2 % 102 50x10° 50 % 10° 81 x10° 240 % 10° 23x10° 169 x 10°
On/Off Ratio 10 10 12.5 16 50.2 100 6.84 443
Device Variation 30% 30% ) 12% ) ) ) )
(Bo/w)
Line resistance () 0.5 0.5 - 0.1 - - - -
Area (mm’) 294 471 4829 0.78 4859 4829 4829 49.88
Mem"ry(,,[/“)‘l‘zat"’“ 88.59 % 88.59 % 88.59 % - 88.59%  88.59% 88.59%  88.59%
(]
Tra'“'"ﬁ,/‘:)““racy 90.02 % 91.03 % 49.00 % 92 % 85.00 % 91.00 % 56.00 % 37.00 %
Training
Throughput (FOPS) 151 1.54 0.14 0.792 0.95 1.04 0.03 030
Training Energy
Efficiency 2.10 232 2.00 176 2.00 2.01 2.00 1.98
(TOPS/W)
Training Peak 381 385 0.16 - 268 357 0.03 038
Throughput (TOPS) : : : : : : :
Training Peak
Energy Efficiency 18.98 19.11 20.54 - 20.11 2057 20.50 1727
(TOPS/W)
3.82 3.86 ] 19.7
| 19.6
381 _ase s
2380 2 3824 g
g g 3.80 4 %19.4
:33'79 E 3.78- §193
§m- g 3.76 B9
- 3.774 ﬁ 3.744 ?,19.1
576 3.724 = 19.0
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(a) (b) (©) (d)

FIGURE 9. The framework was trained using the CIFAR-10 dataset for 256 epochs. Training throughput (TOPS) of VMM with (a) memristor device (b)
memcapacitor device. Training Energy Efficiency (TOPS/W) of VMM with (c) memristor device (d) memcapacitor device.

memcapacitive VMM accelerator, and the hardware configu-
ration for NeuroSim is in Table 1. We particularly emphasize
the significance of on-state resistance (Ron), on-state capac-
itance (Con), and ADC precision in inference-only VMM
accelerators, as these hardware factors play a crucial role in
determining the accuracy and performance of the system. Our
focus lies in analyzing data extracted from TiOx material
memristive and Si material mem-capacitive devices based
on the measurement results of 128 x 128 crossbar array,
with specific attention to nonlinearity, crossbar sneak paths,
asymmetry, device-to-device, and cycle-to-cycle variation for
in-situ training. For benchmarking purposes, we utilize the 8-
layer VGG network which is shown in Fig. 2 with the CIFAR-
10 dataset across various device technologies. In Table 2

VOLUME 11, 2023

each cell precision refers to the number of bits employed
to represent the conductance of each individual memristor
cell. For instance, a system utilizing 5-bit precision memristor
or memcapacitor cells signifies that each memristor can
express 32 distinct conductance levels. When we accumulate
data from 128 of these cells, we effectively combine their
conductance values to calculate the weighted sum of inputs.
The utilization of 5-bit ADC precision in this scenario implies
that the analog sum of these 128 cells is being discretized into
5-bit digital values. Nevertheless, it’s crucial to recognize that
the selection of ADC precision can vary based on the specific
application’s requirements and the desired level of accuracy.
Increasing the bit precision can potentially enhance accuracy
as well.
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FIGURE 10. The training accuracy of the VMM accelerators with
(a) memristor device, (b) memcapacitor device.

The framework also supports larger models as per
the requirement. Simulation using the ResNet-34 network
yielded training accuracies of approximately 86.14% for the
memristor device and 85.81% for the memcapacitor device.
These values were notably lower compared to the results
from the VGG-8 network. However, for future iterations
of the framework, we intend to include a wider range
of networks and more complex datasets to enhance the
comprehensiveness of our analysis. To determine whether
the network is overfitting, we used a validation dataset
to prevent overfitting, which is separate from the training
dataset. We periodically monitored the model’s performance
on this validation dataset using metrics such as validation
loss. The weights that minimized the loss or optimized the
chosen metric were selected as the final trained weights. This
approach ensured that the model did not overly adapt to the
training dataset and could generalize well to new, unseen data.

The proposed framework’s performance is thoroughly
assessed using system throughput (TOPS) and energy
efficiency (TOPS/W). TOPS measures computational per-
formance in terms of the number of trillion operations a
system can perform per second. On the other hand, TOPS/W
is the ratio of throughput to power consumption, indicating
how efficiently the system performs computations per unit
of power consumed. Higher TOPS and energy efficiency
values are desirable for achieving more powerful and energy-
efficient computing systems. Detailed information of the
VMM accelerators on TOPS and TOPS/W can be found
in Fig. 9 and Table 2. The proposed approach is also
evaluated by analyzing the training accuracy curves of both
VMM accelerators, achieving approximately 90.02% and
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91.03% accuracy, as shown in Fig. 10. Table 2 provides a
detailed summary of the proposed method’s performance,
including information about both VMM accelerators, and
compares it with other recently published DNNs imple-
mented with mem-elements crossbar systems, specifically
for the CIFAR-10 image classification task. Notably, with a
significantly smaller network size, the proposed framework
achieves comparable inference accuracy with 8-layer VGG
network using both memristive and memcapacitive devices.
Table 2 provides a concise comparison between the proposed
work and previously published works. The size of the
crossbar in [30] and [32] is large, leading to impractical
area consumption, whereas our proposed VMM accelerator
achieves a smaller footprint compared to [32], [33], [34], and
[35]. Additionally, our proposed work exhibits higher training
accuracy compared to [30], [32], [34], and [35]. Furthermore,
our approach demonstrates better performance in terms
of throughput (TOPS) and energy efficiency (TOPS/W)
compared to earlier works. Unlike [31], which utilizes digital
ReRAM with certain limitations, our proposed work utilizes
hardware-extracted data based on memristor and memca-
pacitor, thereby addressing nonidealities more effectively.
The comparison demonstrates the superior effectiveness of
the proposed VMM accelerator, showcasing its successful
utilization of in-memory computing for on-chip training.

V. CONCLUSION

In this paper, we introduced a comprehensive Python
framework for evaluating large-scale deep neural network
(DNN) on memristive and memcapacitive crossbar systems,
taking into account various non-idealities. The framework
considers device-level factors such as conductance, capac-
itance cycle-to-cycle, and device-to-device variations. The
proposed approach was tested using a simplified 8-layer VGG
network on a 128 x 128 RRAM array. The memristive and
memcapacitive vector-matrix multiplication (VMM) accel-
erators achieved impressive training accuracies of 90.02%
and 91.03% on the CIFAR-10 dataset, respectively. We also
observed that training accuracy is influenced by line resis-
tance, cycle-to-cycle, and device-to-device variations, which
are well managed. Furthermore, the framework provides
detailed hardware estimation for TiOx-based memristor and
Si-based memcapacitor VMM accelerators.
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