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Joint triplet loss with semi‑hard 
constraint for data augmentation 
and disease prediction using gene 
expression data
Yeonwoo Chung 1 & Hyunju Lee 1,2*

The accurate prediction of patients with complex diseases, such as Alzheimer’s disease (AD), as well as 
disease stages, including early- and late-stage cancer, is challenging owing to substantial variability 
among patients and limited availability of clinical data. Deep metric learning has emerged as a 
promising approach for addressing these challenges by improving data representation. In this study, 
we propose a joint triplet loss model with a semi-hard constraint (JTSC) to represent data in a small 
number of samples. JTSC strictly selects semi-hard samples by switching anchors and positive samples 
during the learning process in triplet embedding and combines a triplet loss function with an angular 
loss function. Our results indicate that JTSC significantly improves the number of appropriately 
represented samples during training when applied to the gene expression data of AD and to cancer 
stage prediction tasks. Furthermore, we demonstrate that using an embedding vector from JTSC 
as an input to the classifiers for AD and cancer stage prediction significantly improves classification 
performance by extracting more accurate features. In conclusion, we show that feature embedding 
through JTSC can aid in classification when there are a small number of samples compared to a larger 
number of features.

Deep learning methods have improved prediction accuracy for a wide range of tasks in the biomedical field1–3. 
However, in most cases, the amount of biomedical data is small owing to the high cost of data collection. Thus, 
several computational efforts have been made to overcome this lack of data. In the case of image data, data 
augmentation methods have been used to prevent overfitting and train more complex models4,5. Generative 
adversarial networks (GAN) is a leading data augmentation technique based on the zero-sum principle6. GAN 
trains two neural networks, a generator, and a discriminator. While the discriminator distinguishes the generated 
data from the real data, the generator strives to generate synthetic data that closely adheres to the original data 
distribution. Recently, deep metric learning with triplet loss has been proposed to overcome the limitations of 
small datasets. Deep metric learning is an approach for learning metric embedding7. It learns the representation 
of the input data in a low-dimensional vector space by calculating the distance between vectors. Embeddings 
have been trained to obtain similar representations for the same class of data through the model. Recently, many 
loss functions have been developed for deep metric learning, such as contrastive, triplet, and quadruplet losses8,9. 
The Euclidean distance and cosine similarity are widely used as distance functions to bring samples of the same 
class closer together and others further apart. A triplet network passes three instances of anchor, positive, and 
negative samples10. It calculates pairs of positive and negative distances from the anchor and gives an advantage 
to training by generating a large triplet structure from a relatively small amount of data.

Chaudhari et al.11 and Viñas et al.12 proposed GAN-based data augmentation studies for gene expression data. 
Moreover, Moreno-Barea et al.13 developed a conditional GAN method using gene expression data, and Ahmen 
et al.14 proposed a GAN architecture that integrates two omics datasets to generate omics data from the other 
omics dataset. However, compared to GAN, deep metric learning has been less applied to gene expression data.

In the present study, we developed a new deep metric learning based model and applied it to gene expression 
profiles from Alzheimer’s disease (AD) and The Cancer Genome Atlas (TCGA) datasets. AD is a complex disease 
that causes memory loss. The number of patients with AD has increased in recent decades with the increase in 
life expectancy15. Accumulation of plaques (beta-amyloid) and tangles (tau) are generally identified as causes 
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of the disease16, but the detailed pathogenic mechanisms are unknown. In the characterization of gene expres-
sion values in patients with AD, several studies have identified AD-related genes and discovered other potential 
candidates17,18. However, these studies used gene expression in brain tissues, which is invasive and cannot be 
used for the early diagnosis of AD. However, in the blood, there are differentially expressed proteins similar to 
those found in the brains of patients with AD19. Therefore, gene expression and protein levels in the blood have 
been investigated for the early diagnosis of AD20,21.

With regard to cancer, several studies have predicted patient survival and identified biomarkers for predicting 
cancer type and biological changes based on gene expression22–24. Aouiche et al.25 used a pathway network to 
extract stage-specific genes by constructing gene modules. Park et al.26 applied deep learning to stage prediction 
in gene expression profiles, and Rahimi et al.27 improved the performance of cancer stage prediction and identi-
fied gene sets that are commonly related across different cancer cohorts in TCGA. Kwon et al.28 applied GAN 
to data augmentation to address the problem of the small number of clinical samples and increase prediction 
accuracy.

As convolutional neural networks (CNN) are used in numerous applications, simplified CNN as 1D-CNN 
have been proposed for use in modeling 1-dimensional features29. It can better capture features from unbalanced 
data with a larger number of features than from the number of samples in biomedical data classification. The 
model detects global features with a minimal kernel stride by making the CNN stride equal to the kernel size30. 
Therefore, the 1D-CNN model was used as the embedding layer in our experiments using gene expression data.

We developed a new approach, called joint triplet loss with semi-hard constraint (JTSC), to mine more accu-
rate triplets and identify improved performance by overcoming the lack of data. First, we trained a 1D-CNN 
model with a vector representation by generating sufficient triplets for training and obtained a classifier with 
improved prediction performance using these embedded vectors. Second, we propose a semi-hard constraint 
for sophisticated semi-hard mining and joint loss for training the vector representations. Finally, while learning 
the embedding function, we analyzed the change in the number of triplet categories to check whether the train-
ing of the embedding function was performed properly. When we measured the prediction performance of the 
proposed method using AD and cancer datasets from TCGA, the performance was improved by overcoming 
the lack of data.

Methods
Data description
We used peripheral blood gene expression profiles, such as GSE63060 (AddNeuroMed1, ANM1) and GSE63061 
(AddNeuroMed2, ANM2), downloaded from the Gene Expression Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/). These expression profiles were generated using the Illumina HumanHT-12 v3.0 Expression BeadChip 
for the ANM1, and Illumina HumanHT-12 v4.0 Expression BeadChip for the ANM2. The other peripheral 
blood AD dataset was downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://​adni.​
loni.​usc.​edu). We used all samples in ANM1, ANM2, and ADNI; however, samples without clinical informa-
tion were excluded. We converted the probe ID to the Entrez Gene ID with the information from GPL6947 and 
GPL10558 for ANM1 and ANM2, respectively. Probe IDs not assigned to Entrez gene IDs were removed. We 
selected protein-coding genes in the assigned Entrez Gene ID based on the Homo_sapiens.GRCh38.94 database 
(http://​asia.​ensem​bl.​org/​Homo_​sapie​ns/​Info/​Index); Ensembl IDs of protein-coding genes in the database were 
converted into Entrez Gene IDs using the “biomaRt” package in R software. The expression values for the dupli-
cated Entrez gene IDs in protein-coding genes were treated as mean values. Subsequently, 16,730, 14,957, and 
20,384 gene expression values were selected from ANM1, ANM2, and ADNI, respectively.

In AD, age and sex are prominent risk factors for dementia and are key features used for AD prediction31. 
Therefore, we normalized each clinical information and gene expression dataset and concatenated these nor-
malized features. Samples without clinical information in each dataset were excluded from the prediction. In 
addition, age and sex information were used for ANM data analysis, and educational and marital information 
were additionally treated in the ADNI dataset (Supplementary Table S1). Marriage information was converted 
from − 2 to 2 based on marital status and 0 for unknown. Ten-fold cross-validation was performed, and 20 
percent of the training set was allocated to the validation set.

We further tested the performance of our method by separating patients with early- and late-stage cancer 
for 14 cancers, namely, BRCA, COAD, ESCA, HNSC, KICH, KIRC, LIHC, LUAD, LUSC, PAAD, READ, STAD, 
TGCT, and THCA, in TCGA dataset. The data cohorts used are publicly available and were downloaded from 
the UCSC Xena Browser. Moreover, we obtained clinical information such as age, sex, and cancer stage from the 
GDC Data Portal (portal.gdc.cancer.gov), and the samples without clinical information were removed, identical 
to the data processing of the AD dataset. Note that we did not use the KIRP dataset, which does not include the 
cancer stage of the samples in the clinical information.

Among the cancer samples, primary tumor samples, not metastatic, were selected from each TCGA cohort. 
We considered stage I as early-stage and the remaining tumor stages as late-stage cancers27 (Supplementary 
Table S2). Protein-coding genes were selected using the Homo_sapiens.GRCh38.94 database for analysis. The 
duplicated official gene symbol was integrated into a unique gene symbol using the mean value of the gene 
expression profiles. As a result, we obtained the expression values of 16,561 protein-coding genes from the 
20,530 genes for 13 cancers. For STAD, the expression values of 16,995 protein-coding genes among 26,540 
genes were also treated using the same process. The characteristics of the samples in each stage are provided in 
Supplementary Table S3.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://asia.ensembl.org/Homo_sapiens/Info/Index
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1D‑CNN
CNN structures are the most widely used in deep learning, especially in computer vision applications. A CNN 
that considers each surrounding pixel’s information can train a large amount of image data with a deep layer 
structure and many parameters. Based on the recent development of CNN, the 1D-CNN model is being utilized 
in computer vision and speech recognition32,33 as well as in various fields dealing with non-2-dimensional data. 
1D-CNN also performed well in predicting cancers using TCGA data compared to other 2D-CNN structures30. 
In the 1D-CNN, the local information calculated by the convolutional kernel is also important. However, the 
previous study showed that it can perform well even when using randomly-ordered genes in the gene expression 
data30. When dealing with clinical information in the 1D-CNN model, we reconstructed datasets by concatenat-
ing the clinical information for each kernel size of gene expression to include the clinical information in the 
computation of the kernel unit for training (Fig. 1).

Triplet loss and angular loss
Metric learning maps the data into a new vector space using an embedding function and helps a model train 
with better performance than when using the original features34. In general, metric learning uses Euclidean 
distance or cosine similarity as a distance metric between embedded data to learn the function from which 
the same class gets closer, and other classes move away. Deep metric learning uses a deep-layer model to learn 
these nonlinear embedding functions, and contrastive, triplet, and quadruplet embeddings are representative9,35. 
Triplet embedding consists of anchor, positive, and negative samples. Anchor a can belong to any class, positive 
samples p are extracted from the same class as the anchor, and negative samples n are extracted from a different 
class36. An embedding function f : Rdinput → Rdembedding embeds the features of the input dimension dinput into 
the low-dimensional space of the embedding dimension dembedding using the weight matrix W ∈ Rdinput∗dembedding . 
It then trains the vector of embedded anchor samples ( xa = f (a) ) such that it becomes closer to the vector of 
embedded positive samples ( xp = f (p) ). The embedding function f also trains the embedded vector of negative 
samples ( xn = f (n) ) to be further away from the anchor. It minimizes the distance dp between the anchor and the 
positive sample and maximizes the distance dn between the anchor and the negative sample. In our experiments, 
the Euclidean distance was used to calculate distances dp and dn . A margin m indicates the degree to which dn is 
judged to be close to dp . The triplet loss with a hyperparameter margin m (> 0) is defined as follows:

Moreover, there are three types of triplet samples: easy, semi-hard, and hard, depending on the relationship 
between dp and dn . The easy sample is a sample in which the embedded vector of the positive sample is much 

ltriplet = [dp − dn +m]+,

ltriplet = [||xa − xp||
2 − ||xa − xn||

2 +m]+

Figure 1.   The pipeline of training triplet networks. Clinical information is concatenated with gene expression 
values before passing through the convolutional layer. Embedded vectors of the anchor, positive, and negative 
samples were trained such that samples from the same classes were calculated to be closer, whereas samples 
from a different class were calculated to be farther apart.
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closer to the anchor than the negative sample ( dp << dn ). The semi-hard sample is an easy sample, but it is harder 
than the easy sample because the difference between dp and dn is small ( dn − dp < m ). If the negative sample is 
closer to the anchor and the positive sample is farther from the anchor ( dp>>dn ), it is called a hard sample. In 
most cases of deep metric learning using triplet loss, semi-hard mining is used because including hard samples 
in the training process can lead to bad local optima36. Therefore, we constructed random N triplets out of all 
possible n3 triplets in n data samples, and selected only semi-hard samples for training. We constructed a half 
of N triplets containing disease anchors and the other half of N triplets containing control anchors for balanced 
anchor training. An online semi-hard mining strategy was used to prevent poor training and converge quickly 
in each mini-batch. Unlike offline mining, which defines triplet categories from samples at the beginning of the 
epoch at once, we calculated distances from all N triplets and defined easy, semi-hard, and hard samples at each 
epoch to determine which semi-hard samples to use for weight updates.

An angular loss can achieve better similarity than the traditional triplet loss37. The angular loss compares the 
relative ratio of edges and treats all three edges, which is different from the traditional triplet loss, which deals 
with only two edges from xa . When minimizing the angle ( ∠n ) in the negative sample, a triangle of three triplet 
points was constructed for stable training. The center point xc is defined as the average of the anchor point xa 
and positive point xp and hyperplane P is perpendicular to the edges of xc and xn . Then, xm is defined as one of 
the intersection points between P and circle C with the edges of xa and xp as the diameter. A stable triplet triangle 
consists of xc , xm , and xn for training with an angular constraint. With the hyperparameter α as the degree of 
angular constraint ( ∠n ≤ α ), it has an interpretable geometry, meaning that the angle constraint forms a skinny 
triangle that places negative samples away from the circle of the same class as the anchor. Therefore, an angular 
loss is a similarity transform based on the constraint that the angle is proportional to the relative ratio between 
the two distance differences.

Semi‑hard constraint under switching condition and loss function
As previously mentioned, the semi-hard sample is defined according to dp and dn . However, triplet anchors play 
an important role in defining the category of triplet samples. The category of triplet data can be changed depend-
ing on which one is an anchor and which one is a positive sample. For instance, a semi-hard sample could change 
to a hard sample in certain cases when switching from an anchor to positive, and positive to an anchor (Fig.  2). 
Therefore, such triplets are uncertain semi-hard samples because the categories change according to the anchor 
selection in the two samples from the same class in the triplet data structure. To address the uncertainty of these 
semi-hard samples, we additionally consider that the semi-hard condition is still satisfied in the switching con-
dition. Therefore, we double-checked all semi-hard samples among the constructed triplets during the training 
of the embedding function. These strict semi-hard samples were updated in every epoch by online mining. The 
pseudocode for updating the weights of the embedding function is given in Fig. 3.

Moreover, we added the loss term lswitching to the switched anchor xa′(= xp) and switched positive xp′(= xa) 
samples to weigh semi-hard samples in the anchor-positive switching condition. Therefore, we selected strict 
semi-hard samples using the proposed triplet mining method and weighted them with switching loss. The loss 
term of JTSC used in training is defined as follows:

∠n ≤ α,

tan∠n =
||xm − xc||

||xn − xc||
=

||xa − xp||

2||xn − xc||
≤ tanα,

langular = [||xa − xp||
2 − 4tan2α||xn − xc||

2]+

lswitching = [||xa′ − xp′ ||
2 − ||xa′ − xn||

2 +m]+,

ljoint = ltriplet + lswitching + langular

ljoint = [||xa − xp||
2 − ||xa − xn||

2 +m]+ + [||xa′ − xp′ ||
2 − ||xa′ − xn||

2 +m]+ + [||xa − xp||
2 − 4tan2α||xn − xc||

2]+

Figure 2.   Category change of semi-hard triplet samples under switching condition.
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Results and discussion
Training setup for AD data
The 1D-CNN model consists of a 1-dimensional convolutional layer, a max pooling layer, and a fully con-
nected layer to embed in the vector space used for deep metric learning. We adopted the learning rate 
∈ [0.1, 0.05, 0.01, 0.005] for training and performed the Xavier initialization for the weights of the 1D-CNN. 
The size of the embedding vector ∈ [30,60,90,120,150] was set as a hyperparameter, which is the vector size for 
representing the gene expression data through the 1D-CNN model. The degree α ∈ [30, 45, 60, 75] of the angu-
lar loss was also used as a hyperparameter. The hyperparameters were determined using the validation dataset. 
The sizes of kernels in the 1D-CNN model were set to 200, 150, and 200, which were about 1% of the number 
of genes in ANM1, ANM2, and ADNI, respectively, similar to in a previous study30. The model sets the stride 
size of the kernel equal to the kernel size in order to extract important features from non-overlapping genes. 
The training batch size was set to 300. We then constructed 50,000 triplets of three data points: anchor, positive, 
and negative samples for ANM1 and ANM2. For training with a balanced number of anchors, data consisted of 
25,000 triplets of random AD anchors and 25,000 triplets of random control anchors. However, considering the 
low performance of the baseline from other machine learning methods on the ADNI dataset, we constructed a 
larger dataset with 100,000 triplets, including 50,000 AD anchors and 50,000 control anchors. For each anchor 
in two classes, the positive sample was extracted from the same label as the anchor, and the negative sample was 
extracted from the opposite label of the anchor. We loaded all triplets that we constructed and calculated the 
Euclidean distance between the output vectors of three data points (anchor, positive, and negative) through the 
1D-CNN model. Owing to the anchor dependency in the triplet category definition, we selected strict semi-hard 
samples for training the 1D-CNN model, additionally considering the semi-hard constraint. The Adam optimizer 
with mini-batch was employed in the training step. Subsequently, the joint loss was used as a combination of 
triplet loss, angular loss, and switching loss for training. After embedding the training, validation, and test sets, a 
fully connected network was added to classify the disease and controls using these features. The fully connected 
one-layer neural network was initialized with Xavier initialization and was trained using the Adam optimizer. 
All experiments were performed at a margin m (> 0) of 0.5, where a margin indicates the degree to which dn is 
judged to be close to dp and determines the number of semi-hard samples from the easy samples during training.

Evaluation in AD data
For JTSC, hard and semi-hard samples whose triplet categories changed when switching between the anchor 
and positive samples were filtered out. Strict semi-hard samples that satisfied the semi-hard constraint were 

Figure 3.   Pseudocode of the proposed JTSC algorithm.
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used for training. Thus, training the embedding functions with these semi-hard samples could converge more 
quickly than training with all possible triplets. We calculated the area under the curve (AUC), area under the 
precision-recall curve (AUPRC), and F1 score to measure the performance of the AD prediction model using 
ten-fold cross-validation.

The performance of the proposed method was compared with simple machine learning-based models: support 
vector machine (SVM), random forest (RF), XGBoost (XGB), single layer neural network (NN), 1D-CNN, and 
other augmentation methods using GAN: SVM with GAN and 1D-CNN with GAN. These machine learning 
methods were implemented with the sklearn and xgboost python packages. For the SVM with GAN, GAN was 
applied to the data augmentation using a one-layer neural network for both the generator and discriminator. 
The input was embedded into the embedding vector with a dimension of 512 and a latent variable was randomly 
extracted from a normal distribution. We generated the same number of augmented data points as that of train-
ing data in each fold through the conditional GAN model38. Then, an SVM classifier was trained using both the 
training and generated data.

When measuring the prediction performance with AD gene expression data (Table 1), the RF model showed 
the lowest performances for ANM1 and ADNI. The performances of both SVM and XGB were lower than that 
of 1D-CNN with clinical embedding, except for ANM2. Performance improvements were observed in SVM with 
GAN when compared with SVM without data augmentation on the AD dataset. Similarly, when we applied GAN 
augmentation to 1D-CNN, the performances were improved compared to 1D-CNN except for AUC values in 
ADNI. Furthermore, 1D-CNN with clinical embedding model performed better than using GAN, confirming 
that clinical information was effectively concatenated. In ANM2, XGB, a decision tree-based model, showed the 
highest performance of AUPRC, but 1D-CNN with clinical embedding model outperformed the other baseline 
methods. However, our JTSC model outperformed all other models with AUC values of 0.887, 0.765, and 0.652 
for ANM1, ANM2, and ADNI, respectively, and consistently showed best performances for AUPRC and F1, 
except for AUPRC in ANM2, as shown in Table 1. These results reveal that classifiers with vector representations 
from deep metric learning result in more accurate prediction models than other machine learning methods.

In JTSC, even when training with large triplet data, the model quickly arrived at an optimized model with 
strict semi-hard mining. During the training epoch, we counted the number of triplets in the easy, semi-hard, 
and hard categories to verify whether vector embedding through an embedding function was appropriately 
trained. Figure 4 shows for the ANM1, ANM2, and ADNI datasets that the number of easy samples increased 
while the number of semi-hard and hard samples decreased as the learning progressed, as hard and semi-hard 
samples were converted into easy samples. The training was terminated to prevent overfitting via early stopping 

Table 1.   Performance of Alzheimer’s disease (AD) classification. The highest values are in bold.

Models

ANM1 ANM2 ADNI

AUC​ AUPRC F1 AUC​ AUPRC F1 AUC​ AUPRC F1

RF 0.697 0.697 0.543 0.683 0.634 0.67 0.512 0.349 0.481

SVM 0.775 0.795 0.703 0.676 0.626 0.668 0.584 0.393 0.569

SVM with GAN 0.811 0.798 0.703 0.688 0.627 0.67 0.589 0.398 0.579

XGB 0.856 0.827 0.802 0.743 0.802 0.738 0.565 0.461 0.616

NN 0.788 0.728 0.641 0.723 0.754 0.713 0.534 0.358 0.47

1D-CNN 0.827 0.825 0.81 0.725 0.739 0.726 0.624 0.474 0.626

1D-CNN with GAN 0.861 0.891 0.798 0.728 0.749 0.735 0.608 0.486 0.628

1D-CNN with clinical embedding 0.858 0.887 0.802 0.743 0.755 0.744 0.631 0.495 0.658

JTSC 0.887 0.906 0.83 0.765 0.776 0.767 0.652 0.536 0.678

Figure 4.   Changes in the distribution of each triplet category during the training in (a) ANM1, (b) ANM2, and 
(c) ADNI.
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when the validation loss did not decrease after 30 epochs, or when the number of semi-hard samples to train 
was less than 50.

In addition, when hard samples were included in the training, learning ended before a sufficient number of 
easy samples were generated, and an oscillation interval occurred (Supplementary Fig. S1). The training was 
also affected by the number of hard samples used. The training process with semi-hard mining containing 500 
hard samples in the order of least loss among the hard samples showed a smoother learning pattern than that 
containing full hard samples. The AUC also decreased when additional hard triplet data were used (Supplemen-
tary Table S4).

Ablation study
An ablation study was conducted to demonstrate the impact of components of JTSC (Table 2). All experiments 
were performed using semi-hard mining with online learning at every epoch. Initially, the performance changes 
between the conventional semi-hard mining (triplet loss and angular loss) and the addition of a constraint to 
the extracted semi-hard samples were checked. In most cases, we noticed a marked improvement in AUC values 
by imposing a constraint on the semi-hard samples. One exception is when adding semi-hard constraint to the 
triplet loss in ADNI. A slight reduction in performance from 0.611 to 0.593 was observed. Subsequently, the 
contribution of each of loss (angular loss and switching loss) compared to the joint loss of JTSC was checked. 
Employing a single loss with the constraint model resulted in a lower prediction performance than the joint 
loss of JTSC. Nonetheless, the extent of contribution to performance varied slightly depending on the dataset. 
Specifically, in ANM1, a comparable level of performance contribution was observed between the angular loss 
with constraint model and the switching loss with constraint model. In ANM2, the switching loss ( lswitching ) 
exerted a more substantial influence on prediction performance compared to langular . Conversely, in the ADNI 
dataset, langular exhibited the most pronounced effect on prediction performance. Notably, the triplet loss with 
the constraint model demonstrated the lowest prediction performance in ANM1 and ADNI under stringent 
semi-hard mining conditions. Furthermore, the triplet loss with constraint model was similar or lower than the 
performances of the 1D-CNN with clinical embedding in Table 1. The JTSC model that combined triplet loss, 
angular loss and switching loss accurately selected semi-hard samples, and showed the best performance in AD 
prediction. These findings underscore that, even when learning from the same set of semi-hard samples under 
a semi-hard constraint, the information derived from the combination loss significantly influences the training 
of the embedding function. The combination of a strict semi-hard mining method and joint loss in JTSC proves 
to be highly effective for representing input gene expression data.

In our JTSC approach, input genes were randomly ordered in 1D-CNN. Nevertheless, to explore the potential 
benefits of incorporating gene locality information, an assessment was conducted by arranging input genes based 
on pathway information. Gene ontology (GO) biological process terms were used to group genes into pathways. 
Genes within the same pathways were positioned as neighboring elements in 1D-CNN. Note that genes appearing 
in multiple pathways were handled without duplication. Table 2 shows that performances using pathway informa-
tion (JTSC + ordered by pathway) were within standard deviations of the JTSC performances, suggesting that 
gene order did not play a significant role in JTSC. In a typical CNN model, locality plays a crucial role. However, 
in this study, the order of the features seemed to have little impact on performance. This can be attributed to the 
fact that a relatively large (1 %) of all features were computed within a single kernel.

Furthermore, in the ablation study, we opted for cosine similarity to compute the loss instead of Euclidean 
distance. Unlike Euclidean distance, distance from cosine similarity computes relative comparisons. However, 
in JTSC using cosine similarity, performance degradation was observed as shown in Table 2.

Evaluation in TCGA data
To evaluate our method in another task, an experiment was performed to classify early- and late-stage cancers 
using their gene expression profiles. To train the embedding function through 1D-CNN, 30,000 triplets were 
constructed for the training dataset and 10,000 triplets for the validation dataset, and the number of anchors 
in the early and late stages was set to be a half the number of the triplet. Clinical information, such as age and 
sex, was concatenated for the experiment, and specifically included in every kernel calculation in the 1D-CNN 
model. Five-fold cross-validation was performed with Xavier initialization. Hyperparameters, such as embed-
ding feature dimension, patience for early stopping, and degree of angular constraint, were selected using the 

Table 2.   Ablation study of JTSC. # Performances are shown in AUC values with standard deviations.

Models for ablation study Semi-hard constraint ltriplet langular lswitching ANM1 ANM2 ADNI

Triplet loss ✓ 0.758 ± 0.049 0.715 ± 0.039 0.611 ±0.055

Angular loss ✓ ✓ 0.786 ± 0.033 0.732 ± 0.025 0.52 ± 0.082

Triplet loss + constraint ✓ ✓ 0.861 ± 0.011 0.743 ± 0.03 0.593 ± 0.047

Angular loss + constraint ✓ ✓ ✓ 0.874 ± 0.022 0.739 ± 0.037 0.639 ± 0.044

Switching loss + constraint ✓ ✓ ✓ 0.872 ± 0.025 0.746 ± 0.031 0.624 ± 0.041

JTSC + ordered by pathway ✓ ✓ ✓ ✓ 0.889 ± 0.018 0.761 ± 0.019 0.654 ± 0.039

JTSC + cosine similarity ✓ ✓ ✓ ✓ 0.867 ± 0.027 0.745 ± 0.023 0.605 ± 0.029

JTSC ✓ ✓ ✓ ✓ 0.887 ± 0.019 0.765 ± 0.022 0.652 ± 0.037
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validation set. Then, the performance of JTSC was compared with SVM, RF, XGB, NN and other recent cancer 
stage classification methods; we also used an original dataset with selected features only (FS)28, GAN5 (G5)28 
and multiple kernel learning (MKL)27, as shown in Table 3. To select important features from genes, Kwon et al.28 
additionally used DNA mutation data from the GDC Data Portal. Common protein-coding genes between the 
mutation and gene expression data were selected, which resulted in 16,804 common genes in STAD and 16,391 
common genes in the remaining cancer type data. In each fold, the RandomForestClassifier from scikit-learn was 
performed in Python and genes with higher feature importance were selected using all the parameters described 
in the paper. A generator model G, which consisted of a single layer encoder and decoder and discriminator 
with two layers, generated multiples of the training data with selected features from FS28. From the training set, 
G5 generated five times the number of samples for gene expression data, which generally performed well in the 
paper28. Then, SVM was used as a classifier. MKL is an SVM-based method for finding the weighted combina-
tion of kernels by solving the inner optimization problem27. MKL was performed and a validation set was used 
to search for parameters that optimize the weight of the kernel.

The predictive performance for nine cancer types, COAD, ESCA, HNSC, KICH, KIRC, PAAD, STAD, TGCT, 
and THCA, was the best in JTSC. In particular, for cancer types with less than 100 samples in a class (e.g., COAD, 
ESCA, HNSC, KICH, READ, STAD, TGCT), JTSC performed the best, with the exception of READ (Supple-
mentary Table S2). However, five of the remaining cancers performed better on MKL. In addition, compared to 
SVM that used the entire gene, the prediction performance of FS declined for half of the cancer types. The results 
of the G5 model trained on the generated data of the selected features exhibited performance that was better 
or similar to FS, but still had a performance lower than JTSC. Note that the MKL method used the expression 
values of specific genes in pathways, which incorporated the pathway knowledge. Although JTSC did not use 
the pathway knowledge, JTSC performed better than MKL in 9 out of 14 cancer types.

Conclusion
In the present study, a novel strict semi-hard mining method with constraint and joint triplet loss for deep metric 
learning is proposed. In distance metric learning, for tasks that train with a large number of data points, such as 
image classification, hard mining is more efficient than using whole triple training data39. However, for tasks with 
a small number of samples and a large number of features, such as gene expression data, the semi-hard mining 
method can improve the prediction performance. To obtain a model with better performance, the semi-hard 
samples that were converted to hard or easy samples when the anchor labels and positive labels were exchanged 
were removed. Unlike other triplet mining methods that use all triplet data for training, the embedding function 
was trained in a more sophisticated manner by considering the distance between embedded samples in certain 
conditions. In addition, angular loss was added to alleviate the scale dependence of a triplet loss, along with 
a distance-based objective function in the training. As a result, the sampling method and joint loss improved 
prediction performance on AD and TCGA datasets.

Code availability
We provide the code of JTSC and the splits used for sample dataset (https://​github.​com/​DMCB-​GIST/​JTSC).
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