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A B S T R A C T   

The adulteration of meat products using colourants and curing agents has heightened concerns over food safety, 
thereby necessitating the development of advanced detection methods. This study introduces a deep-learning- 
based spectroscopic method for swiftly identifying counterfeit beef altered to appear fresh. The experiment 
involved 60 beef samples, half of which were artificially adulterated using a colouring solution. Despite 
meticulous analysis of the beef’s colour attributes, no significant differences were observed between the fresh 
and adulterated samples. However, our method, utilising a 344–1040 nm spectral range, achieved a classification 
accuracy of 98.84%. To enhance practicality, we employed gradient-weighted class activation mapping and 
identified the 580–600 nm range as particularly influential for classification. Remarkably, even when we nar
rowed the input to the model to this spectral range, a high level of classification accuracy was maintained. To 
further validate the model’s robustness and generalisability, we allocated 70 beef samples to an external vali
dation set. Comparative performance analysis revealed that our model outperformed traditional machine 
learning algorithms, such as SVM and logistic regression, by 9.3% and 28.4%, respectively. Overall, this study 
offers invaluable insights for detecting counterfeited beef, thereby contributing to the preservation of meat 
product quality and integrity within the food industry.   

1. Introduction 

Food fraud presents a substantial challenge posing threats to both 
public health and the international economy (Spink and Moyer, 2013; 
Hellberg et al., 2020; Li et al., 2023). This fraudulent activity, charac
terised by the intentional deception of consumers for financial advan
tages, is estimated to cost between $10 billion and $15 billion annually, 
accounting for approximately 10% of all marketed food products 
(Johnson, 2014; Robson et al., 2020). Meat products, in particular, 
frequently fall victim to this form of fraud, owing to their elevated 
consumer demands and high selling prices (Barai et al., 1992; Robson 
et al., 2020). 

One prevalent type of meat fraud (Type 1) entails the contamination 
of meat by amalgamating cheaper cuts with more expensive ones, as a 
strategy to decrease costs (Cavin et al., 2018; Fengou et al., 2021). 
Another category of meat fraud (Type 2) involves utilising inexpensive, 
readily available colourants or curing agents to disguise inferior quality 

meat as a higher-value product (Spink et al., 2017; Li et al., 2022). This 
latter form of meat fraud (Type 2) is particularly pernicious for con
sumers as the colour of the meat significantly influences their purchas
ing decisions (Font-i Furnols and Guerrero, 2014; Bjelanovic et al., 2016; 
Corlett et al., 2021). Furthermore, several colourants or curing agents 
employed in such fraudulent practices are known to endanger consumer 
health (Jia and Jukes, 2013; Clofent et al., 2020; Shakil et al., 2022). For 
instance, certain colourants, such as Sudanese dyes, have been pro
hibited in numerous countries owing to their toxic implications (Pan 
et al., 2012; Barciela et al., 2023). Reports also suggest that curing 
agents, such as sodium nitrite and sodium ascorbate, may be linked to 
colorectal cancer (Desmond, 2006; Santarelli et al., 2008; Crowe et al., 
2019). However, the majority of studies addressing meat fraud focus on 
meat adulteration (Type 1) and neglect the distinction between artifi
cially coloured beef and fresh beef (Type 2) (Kamruzzaman et al., 2016; 
Hong et al., 2017; Zheng et al., 2019). Considering the critical role of 
meat colour in consumer purchasing decisions and the potential health 
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hazards associated with artificial colouring ingredients, there is an ur
gent need to explore and develop reliable methods for detecting coun
terfeit meat. 

Spectroscopic methodologies are widely acclaimed for addressing 
food safety concerns, owing to their capacity to provide comprehensive 
insights into the compositions and traits of various substances (Mitsu
moto et al., 1991; Giana et al., 2003; Mandair and Morris, 2015; Qu 
et al., 2015; Petronijević et al., 2017; Petersen et al., 2021). For instance, 
the efficiency of near-infrared spectroscopy, fluorescence spectroscopy, 
and hyperspectral imaging in the analysis and evaluation of the quality 
of diverse food products such as mushrooms, tea, fruit, and milk has 
already been established (Wang and Paliwal, 2007; Aernouts et al., 
2011; Huang et al., 2014; Meenu and Xu, 2019; Firmani et al., 2019; 
Walsh et al., 2020; Matveyeva et al., 2022). Nevertheless, several limi
tations persist that hinder the deployment of these technologies within 
the food industry. Hyperspectral imaging, for instance, faces substantial 
barriers to its widespread adoption, including elevated acquisition costs, 
intricate data analysis prerequisites, and protracted image acquisition 
and processing durations (Gowen et al., 2007; Roberts et al., 2018). 
Similarly, near-infrared and fluorescence spectroscopy are susceptible to 
environmental variables such as temperature, humidity, and mechanical 
vibration, thereby complicating their industrial application (Agelet 
et al., 2010; Hassoun et al., 2019). 

In recent years, diffuse reflectance spectroscopy (DRS) has emerged 
as a viable technique for analysing meat quality, serving to mitigate the 
limitations inherent in the aforementioned spectroscopic information- 
based methodologies (Nguyen et al., 2016, 2019; Nguyen and Kim, 
2019; Shin et al., 2021). This approach places a particular emphasis on 
myoglobin, a heme protein responsible for oxygen transport in muscle 
cells. As myoglobin experiences changes in its redox forms over time, it 
becomes an indispensable factor in the analysis of beef quality (Jurgens 
et al., 2000; Shin et al., 2021). 

However, the application of DRS during beef quality analysis, despite 
its encouraging results, is currently limited by the intricacies involved in 
extracting myoglobin information (Nguyen et al., 2019; Shin et al., 
2021). The process involves fitting an analytical photon diffusion model 
to the recorded diffuse reflectance spectra using a non-linear least-s
quares method, the complexity of which hinders the practical imple
mentation of DRS-based methodologies in industrial or real-world 
environments. Although, spectroscopic techniques have been acknowl
edged as valuable tools across various industries, including the food 
sector, their application for detecting counterfeit meat remains under
explored. Consequently, reliable, straightforward spectroscopic meth
odologies that can directly utilise spectral information for identifying 
counterfeit meat, circumventing the need for complex myoglobin in
formation extraction, are urgently required. 

Deep-learning (DL) models, particularly convolutional neural net
works (CNNs), have emerged as potent tools for classification tasks, 
surpassing conventional analysis methods in numerous domains (Kriz
hevsky et al., 2012; He et al., 2016; Islam et al., 2020; Gautam and 
Raman, 2021). CNNs have demonstrated extraordinary performance not 
only in medical and signal analysis (Drugman et al., 2015; Xu et al., 
2020) but also in the food industry. Several studies, including our own 
previous study (Shin et al., 2021), have utilised CNNs for food safety 
evaluation and quality control (Moon et al., 2020; Liu et al., 2021; 
Chakravartula et al., 2022). In our previous study (Shin et al., 2021), we 
successfully demonstrated the potential of AlexNet, a CNN-based ar
chitecture, in extracting freshness-related features from the spectral 
information of beef. Furthermore, it was able to accurately classify the 
freshness of beef with remarkable accuracy (ACC = 91.9%). These re
sults provide significant insights into the potential application of DL in 
the analysis of beef spectral data, paving the way for precise detection of 
counterfeit beef. 

Given the demonstrated efficiency of DRS in meat quality analysis 
and the robust feature extraction capabilities of DL from spectral in
formation, we propose an AlexNet-based DL model for the detection of 

counterfeit beef using diffuse reflectance spectra directly. To assess the 
performance of our proposed method, we prepared a colouring solution 
using a mixture of colourants and curing agents. We then established 
two groups: a counterfeit group treated with the colouring solution and 
a standard group without such treatment. The model was trained on 
spectral data gathered from both groups. Notably, the model was able to 
discern an optimal pattern for counterfeit beef classification using only 
the diffuse reflectance spectra, without the need for supplemental 
myoglobin information. This approach confirms the feasibility and 
practicality of our proposed method in industrial or real-world appli
cations. Furthermore, we employed gradient-weighted class activation 
mapping (Grad-CAM), a technique used to visualise significant regions 
of input data that strongly influence the model’s decision making (Sel
varaju et al., 2017). This method was utilised to determine the wave
length regions playing an integral role in the classification of counterfeit 
beef. 

To the best of our knowledge, this study represents a pioneering 
effort to directly exploit spectral information for the detection of 
counterfeit beef. By accurately capturing important features from the 
diffuse reflectance spectra, we achieved a high degree of accuracy in 
distinguishing fresh beef from counterfeit beef. The integration of DRS 
and DL in this study presents a reliable and pragmatic solution for 
detecting counterfeit beef. This method not only serves to prevent the 
consumption of counterfeit products but also safeguards consumer 
health and fortifies trust in the food industry. 

2. Materials and methods 

2.1. Sample preparation and storage conditions 

For our experimental process, we purchased 60 beef samples 
extracted from the rump sections of three cows, all slaughtered on the 
same day, from a local butcher shop in Gwangju, South Korea. The beef 
samples were stored in an ice-filled cooler and transported to the labo
ratory within 30 min. Each sample was subsequently cut into 2 cm × 2 
cm × 2 cm (length × width × thickness) portions and packaged in a 
polyethylene sheet with low oxygen permeability. The samples were 
then stored in a refrigerator at 4 ◦C for a duration of 13 days. These 60 
beef samples are referred to as the internal set in this study. 

2.2. Preparation of the colouring solution and beef dyeing procedures 

The preparation of the colouring solution followed an empirical 
process, drawing on insights obtained from prior reports and conducting 
repeated experiments to attain a colour closely resembling that of fresh 
beef (Epley et al., 1992). The colouring solution consisted of sodium 
nitrite (NaNO2, 60 mg, Sigma-Aldrich, USA), sodium ascorbate 
(C6H7NaO6, 149.5 mg, Sigma-Aldrich, USA), Red No. 40 food colourant 
(C18H14O8N2S2Na2, 4 mg, Littes, South Korea), and natural squid ink 
colourant (6 mg, Next Innovation Food, Republic of Korea) combined 
with 80 ml of purified water. Among the 60 beef samples, half were 
designated as the counterfeit group and were submerged in the col
ouring solution for a duration of 1 h on day 11. The remaining samples, 
identified as the standard group, were not treated by the colouring so
lution. Following the colouring process, the samples in the counterfeit 
group were allowed a 2-day reaction period to ensure comprehensive 
staining of the beef’s surface by the colouring solution. 

2.3. Analysis of the colour information 

Colour images of the beef samples were captured using a Samsung 
SEC-NX3000 camera (Republic of Korea) for red, green, and blue (RGB) 
analysis. To control environmental variables, all images were captured 
within a mini-studio (RM-PB6060, RAMI, Republic of Korea). The 
camera settings were configured to a focal length of 30 mm, exposure 
time of 1/50, and a f-number of f/5.6, with a resolution of 5427 × 3648 

E. Jo et al.                                                                                                                                                                                                                                        



Food and Chemical Toxicology 181 (2023) 114088

3

pixels. The centre of each image was cropped to 100 × 100 pixels, and 
the intensity of the RGB components from each pixel was extracted to 
estimate the average intensity of the cropped region. The derived 
average intensity values served to confirm that, upon visual examina
tion, the counterfeit group was indistinguishable from the standard 
group. The methodologies described in this section were implemented 
using Python software. 

2.4. Diffuse reflectance spectra acquisition system 

The DRS system deployed for this study comprised a spectrometer 
(USB4000, Ocean Optics, Delray Beach, FL, USA), which collected light 
within a wavelength range of 344–1040 nm, and a broadband light 
source (Tungsten halogen lamp, HL-2000-HP, Ocean Optics, Delray 
Beach, FL, USA). An optical probe equipped with two optical fibres (each 
with a diameter of 200 μm) at a separation distance of 2 mm was con
nected to the light source and the spectrometer. This probe was placed 
on the beef samples to obtain the diffuse reflectance spectra. To prevent 
the contamination of the beef samples by the optical probe, the samples 
were placed on a 1-mm-thick acrylic plate during the measurement 
process. The beef sample spectra (Rsample) were recorded at 5 p.m., at 24- 
h intervals from the day of the beef samples’ arrival (day 0). The probe 
was shielded with a black fabric to eliminate any influence of ambient 
light on the measurements. 

2.5. Statistical analysis 

To affirm the effectiveness of the colouring solution, we performed a 
statistical comparison of the colour information between fresh (day 1) 
and counterfeit (day 13) beef samples within the counterfeit group. The 
analysis focused on the intensity of the RGB components extracted from 
the beef surface images. A paired t-test with Bonferroni correction was 
employed to examine the changes in colour information within the 
counterfeit group, comparing the intensities of the RGB values before 
and after the application of the colouring solution (Mishra et al., 2019). 
The same statistical methodology was applied to the standard group to 
monitor the change in colour information in the absence of the colouring 
solution. Moreover, an independent t-test on the colour information was 
carried out to confirm the consistency in sample preparation and storage 
conditions between the standard and counterfeit groups. 

To ensure the appropriate selection of standard and counterfeit data 
for model training and testing, we applied a paired t-test with Bonferroni 
correction. This process involved determining whether the data from 
different days must be included in the training and testing phases based 
on the colour information of the standard beef samples from day 1, a 
procedure elaborated upon in Section 2.6. 

2.6. Model architecture and classification mechanism 

The AlexNet architecture, known for its effectiveness in various 
classification tasks, employs Convolutional Neural Networks (CNNs) 
(Jogin et al., 2018). Utilised for its feature extraction capabilities, 
AlexNet was applied in our study to classify beef samples as either 
counterfeit or standard based on their diffuse reflectance spectra 
(Rsample). The architecture extracted key features from Rsample, which 
were then transformed into class probabilities through fully connected 
(FC) layers. We applied activation functions, such as sigmoid, to the FC 
layers, thereby converting the extracted features into a format inter
pretable as the class probabilities. These probabilities, generated by the 
sigmoid function, subsequently facilitated the categorisation of each 
sample into the most probable class (either standard or counterfeit). The 
kernel size and stride parameters of the AlexNet model were optimised 
to ensure efficient and accurate processing of the diffuse reflectance 
spectra. 

P(x) = Sigmoid
(
FC

(
model

(
Rsample

))
(1)  

where the diffuse reflectance spectra, Rsample, are represented by di
mensions of Rsample ∈ R(1 × 3647). The model executes the feature 
extraction process, denoted by model(•). Subsequently, the extracted 
features are analysed by the FC layer (denoted as FC(•)) to ascertain the 
class probability. Ultimately, the likelihood of the input belonging to a 
specific class is determined via the sigmoid function (Sigmoid(•)), rep
resented as P(•). 

The model proposed in this study, based on the AlexNet architecture, 
was trained using a stratified 5-fold cross-validation manner to ensure 
an even representation of both standard and counterfeit beef samples in 
both the training and testing subsets. Our dataset consisted of a total of 
210 samples, comprising 180 standard beef samples and 30 being 
counterfeit beef samples. To address the class imbalance issue, we 
implemented class-specific weight normalisation during the training 
process. The class-specific weights are determined based on the number 
of samples in each class and can be calculated using the following for
mula: 

W′
ci
=

1 − number of sampels in Ci

total number of samples
(2)  

where W′
ci 

represents the normalised weight for the i-th class (Ci), which 
signifies whether it represents counterfeit or standard. 

To designate the standard class, we carried out a statistical test that 
compared the colour information of the beef samples on day 1 with that 
from the subsequent days. According to the results of this statistical test, 
as illustrated in Table 1, the colour information of the beef samples on 
day 2 and day 3 did not significantly deviate from that on day 1. 
Consequently, these samples were categorised as standard and were 
incorporated into the dataset for model training and testing. 

For the optimisation of the model’s performance, a learning rate of 
0.0001 was employed in tandem with the Adam optimiser for weight 
updates. A batch size of 64 and an epoch size of 100 were designated for 
training. Activation functions were applied to each layer, and all DL 
models were implemented using Python 3.7. 

2.7. Comparison metrics 

To ascertain the performance of the model, four key metrics were 
utilised: sensitivity, specificity, F1-score, and area under the curve 
(AUC). 

Sensitivity=
∑n

i=1

1
n

TPi

TPi + FNi
(3)  

Specificity=
∑n

i=1

1
n

TNi

TNi + FPi
(4)  

F1 − score =
∑n

i=1

1
n

2TPi

2TPi + FPi + FNi
(5)  

where TP represents true positives, TN stands for true negatives, FP 

Table 1 
p-values for the statistical analysis comparing RGB values on day 1 and 
days 2 and 3 within the same group. The p-values reveal no significant dif
ferences in the RGB values between day 1 and days 2 or 3 within the same group 
(p-value >0.05).  

Group Colour day 1 vs day2 day 1 vs day 3 

Standard Red 0.341 0.539 
Green 0.664 0.208 
Blue 0.275 0.684 

Counterfeit Red 0.459 0.445 
Green 0.849 0.415 
Blue 0.878 0.742  

E. Jo et al.                                                                                                                                                                                                                                        



Food and Chemical Toxicology 181 (2023) 114088

4

indicates false positives, and FN represents false negatives. The subscript 
i indicates the number zero or one, symbolising the absence or presence 
of the colouring solution, respectively. Thus, zero represents standard 
and one represents counterfeit, with n indicating the number of classes. 
Sensitivity and specificity serve as vital measures of the model’s capa
bility to accurately identify true positive and negative outcomes 
respectively, offering insights into the reliability and effectiveness of the 
classification model. We also employed the F1-score, a harmonic mean 
of the precision and recall, to assess the overall performance of the 
model. Furthermore, the AUC was calculated to evaluate the model’s 
capacity to distinguish between positive and negative classes. Each 
model was trained and validated through 10 iterations, and the classi
fication performance was assessed based on these metrics. 

2.8. Visualising regions significantly affecting the model’s decision 

Grad-CAM is a visualisation technique that assists in identifying the 
critical regions of input data focused upon by a neural network during 
the classification process (Selvaraju et al., 2017). This method harnesses 
the gradient information flowing into the convolutional layer of a neural 
network related to a target class in order to create a heatmap. This 
heatmap accentuates the regions of the input data of utmost importance 
by the feature map’s significance and representing it using different 
colours. Heatmap analysis provides valuable insights into the key as
pects of the input data that contribute to the classification decision. 

In the current study, Grad-CAM was employed to explore the influ
ence of spectral data on the classification of standard versus counterfeit 
beef. This method was applied to the last convolutional layer of the 
AlexNet involved in spectral data processing. This generated a heatmap, 
highlighting the pertinent regions of the input spectra in red and the less 
significant features in blue. 

2.9. External validation 

For the purpose of external validation, we utilised a distinct set of 70 
beef samples, sourced from three disparate anatomical regions: rump (n 
= 40), tenderloin (n = 20), and chuck (n = 10). The rump and tenderloin 
samples were procured from South Korea, while the chuck samples 
originated from Australia. Each sample was meticulously sectioned into 
dimensions of 2 cm × 2 cm × 2 cm (length × width × thickness) and 
hermetically sealed in polyethylene sheets characterised by low oxygen 
permeability. To ensure a comprehensive evaluation, the rump and 
tenderloin samples were subjected to two divergent storage conditions. 
A subset, comprising 10 samples each from the rump and tenderloin 
categories, was stored under conditions identical to those employed for 
internal validation. The remaining samples were maintained at a 
controlled ambient temperature of 25 ◦C for a duration of five days. In 
contrast, the chuck samples were stored at a controlled temperature of 
25 ◦C for a period of three days. The diffuse reflectance spectra (Rsample)

of beef samples were acquired in the same manner as explained in sec
tion 2.4, with the exception that multiple points on the beef samples 
were measured. This approach resulted in a total of 600 data, consisting 
of 300 counterfeit samples and 300 standard samples. This methodo
logical approach was meticulously designed to account for potential 
variability arising from differences in anatomical regions and storage 
conditions. 

We conducted a comprehensive assessment of traditional machine 
learning algorithms, such as support vector machine (SVM) and logistic 
regression, in addition to our DL model, utilising an external dataset 
(LaValley et al., 2008; Pisner and Schnyer, 2020). Initially, the SVM, 
logistic regression, and DL models were trained on an internal dataset. 
Subsequently, these pre-trained models were applied to the external 
dataset to evaluate their robustness. This methodology enabled us to 
rigorously assess the performance of each model on previously unseen 
data. 

3. Results and discussion 

3.1. Statistical comparison between the standard and counterfeit groups 

To ensure that the beef samples in both the standard and counterfeit 
groups underwent testing under consistent conditions, an independent t- 
test was performed on the intensity of the RGB components within each 
group at two distinct time points: immediately post-arrival (day 0) and 
pre-colouring (day 11). Generally, meat samples are highly susceptible 
to storage conditions and environmental influences, and results can be 
unreliable if these variables are not adequately controlled. The statisti
cal comparison between the standard and counterfeit groups revealed no 
significant differences in the intensity of the RGB components (p-value 
>0.05), as illustrated in Fig. 1. These findings demonstrate the unifor
mity and impartiality of the experimental conditions and environmental 
settings for both the standard and counterfeit groups. 

3.2. Trends in the red, green, and blue components during storage 

To monitor the colour change of the beef samples over the storage 
duration, we extracted colour information from daily images of the beef 
samples’ surfaces. Fig. 2 presents the variations in the RGB components 
extracted from surface images of the beef samples in both the counterfeit 
and standard groups from day 1 to day 11. Between day 1 and day 11, 
the red component gradually declined over time in both groups, whereas 
the blue and green components gradually increased. The changes in the 
RGB components on the beef surface observed throughout the storage 
period were congruent with those reported in previous studies (Nguyen 
et al., 2016; Shin et al., 2021). 

However, noteworthy differences were observed in the slope of the 
trend line and the R2 value. This can be attributed to variations in the 
storage temperature of the beef, experimental procedure, and specific 
cut of beef. In a prior study, the storage temperature was set at 4.5 ◦C 
(Nguyen et al., 2019), which is 0.5 ◦C higher than the storage conditions 
utilised in the current research. Moreover, the exposure of beef samples 
to room temperature was minimised in this study owing to the practice 
of spectral measurements being performed once a day, as opposed to 
twice daily in the previous study (Nguyen et al., 2019). Temperature is 
intrinsically associated with meat spoilage, with the rate of spoilage 
rising exponentially as the temperature increases (Davey and Gilbert, 
1976). Consequently, it is reasonable that the beef samples in this study, 
stored at comparatively lower temperatures and exposed less frequently 
to room temperature, would exhibit a more gradual trend line slope. 

Additionally, the former study utilised samples from various cuts 
such as loin, round, chuck, and brisket (Nguyen et al., 2019), whereas 
this study employed samples from the rump of the cows. Given that beef 
samples exhibit different spoilage rates due to variances in fat and 
moisture content across different cuts, it is plausible that the variation in 
sample cuts influenced the slope of the trend line and the R2 value 
(Chang et al., 2012). 

3.3. Preparation and validation of the colouring solution 

The formulation of the colouring solution was devised based on the 
observed trends in the RGB colour components, as illustrated in Fig. 2. 
Both the counterfeit and standard beef samples exhibited a gradual 
decrease in the red component over time, whereas the blue and green 
components experienced a steady increase. Given that the colouring 
solution’s objective was to make the beef resemble its fresh state (day 1), 
we aimed to enhance the red component and suppress the green and 
blue components. Through a series of iterative experiments, we devel
oped an optimal recipe comprising the Red No. 40 food colourant, so
dium nitrite, and sodium ascorbate to bolster the red component, as well 
as squid ink, a natural colouring agent, to diminish the blue and green 
components. 

To corroborate the effectiveness of the colouring solution employed 
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in the study, we conducted a statistical analysis focused on the in
tensities of the RGB components extracted from the images of the beef 
surfaces. The colouring solution’s objective was to render the fresh (day 
1) and counterfeit (day 13) beef samples visually indistinguishable. 
Hence, we performed a paired t-test with Bonferroni correction 
comparing the intensities of the RGB components between the beef 
samples from day 1 and day 13 within the counterfeit group. The p- 
values for the RGB intensities for the beef samples from day 1 and day 13 
were 0.277, 0.211, and 0.101 respectively, indicating no significant 
differences, as demonstrated in Fig. 3 (a). 

Conversely, when the same statistical analysis was applied to the day 
1 and day 13 beef samples within the standard group that did not 
employ the colouring solution, a statistically significant difference was 
noted in the intensities of the RGB components, as shown in Fig. 3 (b). 
The p-values for the RGB components in the standard group were 7.80 ×
10− 10, 1.71 × 10− 10, and 2.74 × 10− 8 respectively. 

Fig. 4 presents images and spectral information of the beef samples 
utilised in the experiment and offers a qualitative representation of the 
aforementioned statistical results. In the standard group that did not 
employ the colouring solution, a significant difference in colour 

Fig. 1. Statistical comparison of the intensity of RGB components between the standard and counterfeit groups, indicated by corresponding p-values. The 
results show no significant difference (p-value >0.05) between the two groups. 

Fig. 2. Trend analysis of the RGB values of beef samples with respect to storage time: (a) red components, (b) green components, and (c) blue compo
nents. Shaded regions indicate the standard deviation. The equations within each panel represent the outcomes of linear regression analysis, with R2 denoting 
the coefficient of determination. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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information was evident between the two different time points, whereas 
the counterfeit group that employed the colouring solution exhibited no 
discernible difference. 

These statistical results offer compelling support for the effectiveness 

of the colouring solution in maintaining the visual freshness of beef. By 
utilising the colouring solution, low-quality beef can be masqueraded as 
high quality, making it visually indistinguishable to consumers. Hence, 
these results emphasise the critical necessity for the development of 

Fig. 3. Outcomes of paired t-tests conducted within each group to affirm the effectiveness of the colouring solution. (a) Beef samples treated with the 
colouring solution on day 11 (counterfeit group). (b) Beef samples untreated with the colouring solution (standard group). The annotations denote the results of 
statistical tests: ns for p-value >0.05, * for p-value ≤0.05, ** for p-value ≤0.01, and **** for p-value ≤0.0001. The value adjacent to the annotation indicates the 
respective p-value, and C within parentheses signifies the usage of the colouring solution. 

Fig. 4. Comparison of surface images and spectral information of randomly selected beef samples from the standard and counterfeit groups on day 1 and 
day 13. The image from the standard group on day 13 visually highlights significant deterioration in beef quality, whereas such deterioration is less discernible in the 
counterfeit group treated with the colouring solution. 
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technology capable of detecting counterfeit beef to thwart food fraud 
and safeguard consumers from potential harm. 

3.4. Evaluating classification performance and constructing generalised 
model for data under variable conditions 

In this study, we employed spectral information, which maintains a 
close relationship with meat quality, as input data for the development 
of a AlexNet-based DL model to classify standard and counterfeit beef. 
Furthermore, we conducted a comparative analysis, pitting our method 
against traditional machine learning algorithms, specifically support 
vector machine (SVM) and logistic regression (LaValley et al., 2008; 
Pisner and Schnyer, 2020). Our prior study utilised extracted myoglobin 
information to enhance beef freshness classification performance (Shin 
et al., 2021). However, in this research, we aimed to enhance the 
technique’s practicality by solely relying on diffuse reflectance spectra, 
without the need for myoglobin information acquisition. 

Initially, our DL model was trained using spectral data spanning from 
344 nm to 1040 nm. The DL model demonstrated exceptional perfor
mance on the internal validation dataset, as depicted in Table 2. Ac
cording to Table 2, the DL model achieved an impressive average 
accuracy of 98.84% over 10 iterations. This outstanding performance 
was further highlighted by a high AUC value of 0.98, as shown in 
Table 2, indicating the model’s superior classification capability. Addi
tionally, the model’s accuracy was further confirmed with an F1-score of 
0.95. These remarkable performance metrics validate the effectiveness 
of the proposed method in identifying counterfeit beef without the need 
for myoglobin information extraction, leveraging the powerful feature 
extraction capabilities of DL. 

Despite the exceptional performance of our method, it was slightly 
lower than that of machine learning algorithms on the internal valida
tion set. Nevertheless, it remains crucial to assess the algorithm’s ability 
to capture general features for classifying counterfeit beef from a diverse 
range of beef cuts and under varying storage conditions in real-world 
scenarios. To evaluate the generalisation capability of both machine 
learning methods and our model, we collected an external validation set 
comprising various beef cuts, such as rump, tenderloin, and chuck, 
under various storage conditions. Interestingly, our model outperformed 
SVM and logistic regression on the external dataset, achieving an ac
curacy of 97.61%, a 0.98 AUC, a 0.98 F1-score, a 0.97 sensitivity, and a 
0.99 specificity, as demonstrated in Table 2. These results underscore 
that our model effectively captured the general features from diverse 
beef samples and highlight the robustness of our proposed model for 
real-world applications in detecting counterfeit beef. 

An intriguing avenue for future research, not directly explored in the 
current study, pertains to the applicability of our method in identifying 
meat anomalies such as PSE (Pale, Sofe, Exudative) and DFD (Dark, 
Firm, Dry), which are less commonly observed in beef. Numerous 

studies have successfully employed VIS/NIR spectroscopy to discrimi
nate between normal, PSE, and DFD meat, reporting high classification 
accuracies (Jiang et al., 2017; Barbon et al., 2018; Tejerina et al., 2022). 
Given that our methodology also leverages spectral data in the VIS/NIR 
region, albeit for the detection of adulteration via colouring agents, it 
stands to reason that our approach may possess utility in the identifi
cation or differentiation of PSE and DFD conditions. This conjecture 
suggests that our method could have broader applications and highlights 
its relevance in the ongoing scientific discussions about meat quality 
assessment. 

3.5. Reducing the input wavelength region: wavelength selection using 
Grad-CAM 

To enhance the practicality and efficiency of the developed model, 
we employed Grad-CAM analysis to identify influential wavelength re
gions pertinent to the classification task. Initially, Grad-CAM was 
applied to a counterfeit beef classification model trained with diffuse 
reflectance spectra in the 344–1040 nm wavelength region to derive 
wavelength-dependent weights. As depicted in Fig. 5, data within the 
580–600 nm wavelength region were underscored as significantly 
influential in classifying counterfeit beef samples. These findings align 
with those of a previous study that underscored the importance of the 
575–600 nm region in classifying the freshness of beef (Shin et al., 
2021). This observation corroborates the notion that crucial features 
associated with the quality of beef are concentrated in the second half of 
500 nm, situated in the visible light region. To evaluate the significance 
of this specific wavelength region, we conducted a separate training 
experiment using spectral data solely within the 580–600 nm range. 
Notably, the model trained exclusively on this region maintained its 
outperforming performance, achieving an average accuracy of 97.85% 
(AUC: 0.97, F1: 0.93) on internal data and an accuracy of 93.94% (AUC; 
0.94, F1: 0.94) on external dataset, as indicated in Table 2. This result 
further affirms the critical importance of the 580–600 nm wavelength 
region in accurately classifying standard and counterfeit beef samples, 
underscoring the superior capability of our model in capturing salient 
features from the data. 

The 580–600 nm region possesses several characteristics that 
correlate with myoglobin information, which are not observed in other 
wavelength regions. Myoglobin displays different structural formations 
depending on its redox state (Mancini and Hunt, 2005), and these 
structures result in varying spectroscopic properties. Consequently, the 
composition of the myoglobin redox state dictates the shape of the 
diffuse reflectance spectra derived from meat. Generally, the myoglobin 
redox states present in meat are oxymyoglobin (oxy-Mb), deoxy
myoglobin (deoxy-Mb), and metmyoglobin (met-Mb), which are char
acterised by a steep change in absorption for oxy-Mb and deoxy-Mb in 
the 580–600 nm region. The abruptness of the absorption indicates that 

Table 2 
Summary of the performance of the classification model for distinguishing between standard and counterfeit beef based on different wavelength regions on internal 
and external validation set, as indicated by accuracy (ACC), sensitivity, specificity, F1-score, and area under the curve (AUC). The data shown represent the mean 
standard deviation of the overall sample set.  

Dataset Wavelength Algorithm ACC (%) AUC F1-score Sensitivity Specificity 

Internal 344–1040 nm SVM 99.52 ± 0.01 0.98 ± 0.03 0.98 ± 0.04 1.00 ± 0.00 0.97 ± 0.07 
Logistic 99.05 ± 0.02 0.97 ± 0.07 0.96 ± 0.08 1.00 ± 0.00 0.93 ± 0.13 
Ours 98.84 ± 2.65 0.98 ± 0.07 0.95 ± 0.14 0.99 ± 0.02 0.96 ± 0.15 

580–600 nm SVM 99.05 ± 0.02 0.99 ± 0.01 0.97 ± 0.06 0.99 ± 0.02 1.00 ± 0.00 
Logistic 99.52 ± 0.01 0.997 ± 0.01 0.99 ± 0.03 0.99 ± 0.01 1.00 ± 0.00 
Ours 97.85 ± 4.24 0.97 ± 0.08 0.93 ± 0.16 0.98 ± 0.04 0.97 ± 0.15 

External 344–1040 nm SVM 88.31 0.88 0.89 0.77 1.0 
Logistic 69.15 0.69 0.59 0.93 0.45 
Ours 97.61 0.98 0.98 0.96 0.99 

580–600 nm SVM 86.90 0.87 0.88 0.74 1.0 
Logistic 84.79 0.85 0.87 0.70 1.0 
Ours 93.94 0.94 0.94 0.88 0.997  
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the shape of their diffuse reflectance spectra can sensitively respond to 
minor changes in their composition. Hence, our model appears capable 
of detecting the differences between standard and counterfeit beef and 
achieving high accuracy by focusing on this particular region. 

The second contributing factor lies in the existence of the isosbestic 
points of oxy-Mb and deoxy-Mb and oxy-Mb and met-Mb within this 
region. An isosbestic point denotes a juncture at which the absorption of 
a chromophore is equal, and a widely acknowledged method to estimate 
chromophore composition change involves analysing the absorption 
over the surrounding wavelength region based on the isosbestic point. 
Two available isosbestic points exist within the 580–600 nm region, 
likely aiding in the model’s classification capacity. Contrary to previous 
studies that utilised an analytical photon diffusion model to directly 
extract myoglobin information and incorporate it as prior information 
(Shin et al., 2021), the present study succeeded in extracting the 
necessary features to discriminate counterfeit beef from diffuse reflec
tance spectra using only a DL model. 

By restricting the spectral region, we discover several benefits, 
including reducing the system complexity and augmenting the practi
cality of our proposed method. This approach paves the way for po
tential real-world applications within the meat industry, where the 
requirement for portable equipment is often prevalent. 

4. Conclusion 

In this study, we have developed a AlexNet-based DL model that 
utilises spectral data for the identification of counterfeit beef, exhibiting 
significant potential for industrial application and real-world scenarios. 
The counterfeit beef samples, created using a colouring solution, did not 
demonstrate any statistically significant variation in colour information 
from the standard beef samples, indicating that consumers may find it 
challenging to visually differentiate between counterfeit and standard 
beef. However, our proposed method managed to distinguish the 
counterfeit beef from the standard beef with remarkable accuracy, 
suggesting that the spectral data contained crucial information for dis
tinguishing counterfeit beef, and that our model was successful in 
extracting these pertinent features. Notably, our proposed method 
demonstrated superior performance across various conditioned beef 
samples, thereby affirming its robustness in comparison to traditional 
machine learning algorithms. 

Furthermore, we deployed Grad-CAM to ascertain the wavelength 
regions most pertinent to the classification of counterfeit beef. The 
findings highlighted the 580–600 nm region as the most consequential 
for this classification, with our model exhibiting high performance 
within this narrowed wavelength region. These results underscore the 
practicality and efficiency of our proposed method, and we anticipate 
that our research can significantly contribute to safeguarding consumer 
health against counterfeit beef and mitigating food fraud. 

CRediT authorship contribution statement 

Eunjung Jo: Conceptualization, Methodology, Validation, Investi
gation, Data processing, Writing – original draft, Visualization. 
Youngjoo Lee: Conceptualization, Methodology, Validation, Investi
gation, Data processing, Writing – original draft, Visualization. Yumi 
Lee: Methodology, Investigation. Jaewoo Baek: Methodology, Investi
gation. Jae Gwan Kim: Conceptualization, Resources, Writing – review 
& editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This work was supported by the GIST Research Institute (GRI) Inte
grated Institute of Biomedical Research (IIRB) grant funded by the GIST 
in 2023. This work was also supported by the National Research Foun
dation of Korea (NRF) grant funded by the Korea government (MSIT) 
(2022K1A3A1A20014975). 

References 

Agelet, L.E., Hurburgh Jr., C.R., 2010. A tutorial on near infrared spectroscopy and its 
calibration. Crit. Rev. Anal. Chem. 40 (4), 246–260. 

Aernouts, B., Polshin, E., Lammertyn, J., Saeys, W., 2011. Visible and near-infrared 
spectroscopic analysis of raw milk for cow health monitoring: reflectance or 
transmittance? J. Dairy Sci. 94, 5315–5329. 

Barai, B., Nayak, R., Singhal, R., Kulkarni, P., 1992. Approaches to the detection of meat 
adulteration. Trends Food Sci. Technol. 3, 69–72. 

Barbon, S., Costa Barbon, A.P.A.D., Mantovani, R.G., Barbin, D.F., 2018. Machine 
learning applied to near-infrared spectra for chicken meat classification. J.Spectros. 

Barciela, P., Perez-Vazquez, A., Prieto, M., 2023. Azo dyes in the food industry: features, 
classification, toxicity, alternatives, and regulation. Food Chem. Toxicol., 113935 

Bjelanovic, M., Egelandsdal, B., Phung, V., Langsrud, Ø., Sørheim, O., Hunt, M., 
Slinde, E., 2016. Effects of metabolic substrates on myoglobin redox forms in 
packaged ground beef. Food Packag. Shelf Life 8, 24–32. 

Cavin, C., Cottenet, G., Cooper, K.M., Zbinden, P., 2018. Meat vulnerabilities to 
economic food adulteration require new analytical solutions. Chimia 72, 697–697.  

Chakravartula, S.S.N., Moscetti, R., Bedini, G., Nardella, M., Massantini, R., 2022. Use of 
convolutional neural network (cnn) combined with ft-nir spectroscopy to predict 
food adulteration: a case study on coffee. Food Control 135, 108816. 

Chang, Z., Zheng, D.M., Xia, X.F., Kong, B.H., 2012. Quality attributes of four major 
retails cuts from songjiang cattle. Adv. Mater. Res. 554, 1160–1164. 
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