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Abstract

As Light Detection and Ranging (LiDAR) sensors become increasingly prevalent in the field of autonomous driving, the need for ac-
curate semantic segmentation of three-dimensional points grows accordingly. To address this challenge, we propose a novel network
model that enhances segmentation performance by utilizing normal vector information. Firstly, we present a method to improve
the accuracy of normal estimation by using the intensity and reflection angles of the light emitted from the LiDAR sensor. Secondly,
we introduce a novel local feature aggregation module that integrates normal vector information into the network to improve the
performance of local feature extraction. The normal information is closely related to the local structure of the shape of an object,
which helps the network to associate unique features with corresponding objects. We propose four different structures for local fea-
ture aggregation, evaluate them, and choose the one that shows the best performance. Experiments using the SemanticKITTI dataset
demonstrate that the proposed architecture outperforms both the baseline models, RandLA-Net, and other existing methods, achiev-
ing mean intersection over union of 57.9%. Furthermore, it shows highly competitive performance compared with RandLA-Net for
small and dynamic objects in a real road environment. For example, it yielded 95.2% for cars, 47.4% for bicycles, 41.0% for motorcycles,
57.4% for bicycles, and 53.2% for pedestrians.
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List of symbols

p:
k:

Specific point in LiIDAR point cloud
Index for each point of NLFA module input (k=

1,....N).
Index for each point of k-NN algorithm for p (i=
1,....K).

ith-nearest point of point p

kth point of NLFA module input

(x, v, z) position of point p

(nx, ny, n) normal of point p

(x, y, z) position of point p;

(nx, ny, nz) normal of point p;

Normalized LiDAR intensity at point p

Normalized LiDAR intensity at point p;

Function to calculate the weight for intensity at point
pi

Covariance matrix for the neighborhood points p;
Weighted covariance matrix for the neighborhood
points p;

Multi-layer perceptron to extract feature

Encoded redundant point position of neighbor i at p
Encoded redundant point normal of neighbor i at p*
Shared MLP followed by the softmax function
learnable weights of the shared MLP

Extracted local feature of point p*

Extracted local feature of neighbor i at p*

Score mask for fittering feature of neighbor i at p*

C: Number of classes

TP : Numbers of true positive predictions for each classes
FP.: Numbers of false positive predictions for each classes
TN, : Numbers of true negative predictions for each classes
FN. : Numbers of false negative predictions for each classes
Lee : Cross entropy loss of neural network

7 ith values of neural network output

zZj: jth values of neural network output

FOV : Vertical field of view of the LiDAR sensor

1. Introduction

To advance the field of autonomous driving and facilitate its prac-
tical applications, a wide spectrum of research initiatives is cur-
rently underway. Addressing the complexity and safety challenges
of urban autonomous driving, Noh and An (2022) introduced a re-
liable risk assessment framework tested in real-world urban con-
ditions. Meanwhile, Eom and Lee (2022) found that a function-
centered interface with visual and auditory feedback significantly
improves driver mode awareness for vehicles at different automa-
tion levels. Research aimed at enhancing the performance and
robustness of autonomous driving through the use of LiDAR sen-
sors is also actively conducted. The LiDAR sensors excel in de-
livering high-precision 360-degree distance measurements, func-
tioning effectively in low-light conditions, and generating three-
dimensional (3D) maps, making them a crucial component for

Received: September 11, 2023. Revised: November 7, 2023. Accepted: November 7, 2023

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This is an Open Access article
distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

$20Z Jaquisidesg g0 uo Jesn ABojouyos | ¥ 9oUsI0g 10 a1nsu| N Buemo) Aq /861 1//2E€2/9/0 1 /a101e/apal/woo dno oiwepeose//:sdiy woll pepeojumod


https://doi.org/10.1093/jcde/qwad102
https://orcid.org/0009-0003-9515-7544
https://orcid.org/0000-0001-7668-5796
mailto:khko@gist.ac.kr
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

Journal of Computational Design and Engineering, 2023, 10(6), 2332-2344 | 2333

autonomous driving. They generate 3D points that contain only
geometric information about objects. Therefore, it is necessary to
recognize which point belongs to which object. This step is called
semantic segmentation, which assigns the label of an object to
the corresponding points. Various attempts have been made to
address this problem, and a deep learning-based approach has
achieved remarkable success.

3D point semantic segmentation can be broadly categorized
into two main approaches: projection- and point-based methods.
Based on the projection method, the projection-based approach
can be further divided into multi-view, spatial, volumetric, permu-
tohedral, and hybrid methods. On the other hand, the point-based
approach can be divided into pointwise Multi-Layer Perceptron
(MLP), point convolution, Recurrent Neural Network (RNN)-based,
and graph-based methods. This paper reviewed related papers
based on two broad categories, projection- and 3D point-based,
to make the presentation concise.

1.1. Projection-based methods

Convolutional Neural Network (CNN)-based deep learning mod-
els have proven successful for 2D image segmentation. Many re-
searchers have attempted to apply these models to 3D point seg-
mentation. In these approaches, 3D points are transformed into
2D images and used as input to the network. The transforma-
tion is given as equation (1) (Wu, Wan, et al., 2018; Wu, Zhou,
et al, 2019). Each point (x, y,z) is converted via a mapping to
spherical coordinates (u, v) and finally to image coordinates, as
defined by

u\ L1[1—arctan (y, x) 7] w .

v)  \[1- (arcsin (zr™!) + FOVyp)FOV ] )’ @)
where (w, h) are the height and width of the image representation
of the 3D point cloud, FOV = FOVyp + FOVyuyy is the vertical field
of view of the LiDAR sensor, and r is the depth of a point.

Wu et al. (Wu, Wan, et al., 2018; Wu, Zhou, et al., 2019) present
a fully convolutional encoder-decoder neural network through
generating a 360-degree image from a point cloud via spheri-
cal projection and predicted semantic labels “achieving a mean
intersection over union (mloU) score of 37.2% and 44.9% in a
benchmark test”. Milioto et al. (2019) proposed a high-performance
architecture called RangeNet, based on Darknet53 (Redmon &
Farhadi, 2018) backbone, with k-Nearest Neighbor (k-NN)-based
noise elimination as post-processing. It achieved an mloU score
of 52.5% and showed high performance with a speed of 12 fps.
However, projecting 3D points to 2D images and re-projecting
the predicted 2D labels to the point cloud can cause infor-
mation loss and errors, ultimately compromising segmentation
performance.

Voxel-based approaches offer another solution to the problem
of 3D point segmentation. Voxels are widely used to handle com-
plex 3D shapes in rendering, segmentation, and reconstruction.
Various approaches have been proposed to address the challenge
of 3D point segmentation using voxels. In 3D U-Net (Cicek et al.,
2016), a voxel-based convolutional segmentation network for gen-
eral 3D point clouds was introduced. Zhou and Tuzel (2018) pre-
sented an effective method to segment sparse LiDAR point clouds.
Hilbig et al. (2023) achieved performance improvement by using a
geometric feature called a signed distance field for a 3D voxel net-
work. Another method, i.e., Deep FusionNet proposed by Zhang
et al. (2020) aims to minimize information loss during voxelization
by combining voxel and point features. Alternatively, a novel grid
in polar form was proposed to consider more points inside than

the conventional voxel-based method by leveraging the charac-
teristics of LiDAR sensors. In addition, a ring CNN architecture,
called PolarNet, was developed to process such a grid efficiently.
It achieved an mloU of 54.3% in the benchmark test (Zhang et al.,
2020). However, it required a lot of memory and computation time
and also suffered from voxel projection errors. Despite its effec-
tiveness, the voxel-based method may encounter errors during
voxelization. One way to reduce this problem is to use smaller
grids. However, it can increase the computational cost because of
the 3D convolution step in the neural network.

1.2. Point-based methods

3D points can be directly utilized in segmentation. PointNet
(Qi et al.,, 2017a), the point-based neighborhood feature learning
method, processes point clouds and extracts features through
fully connected layers. PointNet++ (Qi et al, 2017b) improved
upon PointNet by employing hierarchical pooling and context rep-
resentation. However, neither of these methods can handle large-
scale point clouds obtained by LiDAR sensors due to the compu-
tation cost growing proportionally to the input size. A k-NN-based
local feature extraction technique (Luo et al., 2021) was proposed
to enhance segmentation performance but still suffered from the
computational cost issue. To solve this problem, Hu et al. (2020)
proposed RandLA-Net, which uses a random sampling method
and introduces a local feature aggregation module to process
large point clouds and dramatically improve segmentation per-
formance efficiently. In particular, it overcame the limitations of
PointNet and achieved an mloU of 53.9% in the benchmark test.
SCF-Net (Fan et al., 2021) presents a new local feature extraction
method based on polar representation.

Benchmark tests have demonstrated that the point-based
methods have the potential to be used for semantic segmenta-
tion in autonomous driving. However, they still need to improve
the segmentation of various objects critical for driving safely, such
as people and bicycles, which are small in size.

1.3. Contributions

Inspired by RandLA-Net, we proposed a neural network model
that utilizes 3D points and surface normal vectors to enhance seg-
mentation performance. Here, RandLA was selected as the base
architecture due to its reputation for robust performance across
different LIDAR sensor types. While 3D points represent the shape
of an object, normal vectors provide information about the ori-
entation of the object’s local shape at each point. Using inten-
sity information, we developed a novel normal estimation method
from a point cloud. We introduced a normal local feature aggre-
gation (NLFA) module that combines 3D points and normal vec-
tors in the encoding process to extract local features that aid in
segmentation.

The surface normal vectors are very useful for recognizing the
features of objects within the LiDAR point cloud. It contains the
orientation of the point, through which it is possible to obtain cur-
vature information of the object. As a result, the object’s appear-
ance can be effectively grasped, and information on a small ob-
ject with a significant change in curvature can be efficiently ob-
tained. Moreover, we developed a principal component analysis
(PCA)-based normal estimation method that utilizes the reflec-
tion intensity and physical characteristics of LiDAR sensors. Fi-
nally, we compared the proposed method with others using the
SemanticKITTI datasets, and our results demonstrated better per-
formance than other methods.
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Figure 1: Framework of the proposed network.
The main contributions are 3-fold:

(i) We enhance the overall segmentation performance of 3D
points by using a local feature aggregation module that in-
corporates both 3D points and normal vectors.

(ii) By utilizing normal features, we improve the recognition
rate of small objects, such as humans, cars, and bicycles,
which are important to autonomous driving.

(iif) We propose a novel normal estimation method that uti-
lizes the physical properties of LiDAR sensors and inten-
sity information to estimate surface normal vectors. Also,
this method works robustly against irregular noise of LIDAR
Sensors.

2. Proposed Method

This section describes the proposed framework. The overall struc-
ture of the proposed method is shown in Fig. 1. A point cloud gen-
erated by a LIDAR is processed as input. The normal vectors at
each point in the point cloud are estimated using the intensity-
assisted method of normal vector estimation. A tuple is con-
structed using the position, normal vector, and intensity 7 chan-
nel (x, Y.z, ny, ny, ng, i) value at each point. N tuples are then cre-
ated and fed into the segmentation network. An encoder-decoder
structure and a skip connection are used for the network. The
front half of the network, enclosed in the dotted box, is an encoder.
It consists of the first five layers next to the input layer, which in-
clude a novel NLFA module and a random sampling layer between
the point sub-feature, and the decoder, composed of the next five
layers following the encoder, has four up-samples with MLP. The
header, located at the end of the network, has a simple Fully Con-
nected (FC) layer with a dropout. An input of N points is given to

the encoder. Each of the five layers of the encoder processes the
input using a NLFA module and shrinks the input data size with
a 4-fold decimation ratio by random sampling, while the dimen-
sion of extracted features at each point increases, assigning more
features to the point. The decoder has a symmetric structure to
the encoder, with two fully connected layers attached to its end,
which produce N points labeled with n classes.

2.1. Intensity-assisted normal vector estimation

Normal vectors can be estimated from 3D points using traditional
PCA (Hoppe et al., 1992).

K
M=) (p-p)(p—D )
i=1

1

Suppose that pis a point of interestand p; (i=1, ..., K) are the
points in the nearest neighborhood of p. Then, the normal vector
at p corresponds to the eigenvector that has the highest eigen-
value of the covariance matrix M calculated for p;. The covariance
matrix is computed by equation (2).

However, the accuracy of this method for estimating normal
vectors is sensitive to the value of K, the distribution pattern of
points, and noise.

To improve the robustness of normal vector estimation, Park
et al. (2020) proposed the weighted method utilizing LIDAR inten-
sity information. Weights w!" are calculated by exponential of
difference of I intensity for each neighborhood point, as shown
in equation (3), and a weighted covariance matrix M’ is computed
using equation (4):

wi" = exp (I —II)) 3)
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(a) Cross product

(b) Traditional PCA

(¢) Ours

Figure 2: Normal estimation results in HSV color space on the KITTI Velodyne odometry dataset using (a) cross-product method, (b) PCA without
intensity information, and (c) our proposed method considering the LiDAR features.
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Additionally, a median filter (Huber, 2004) is applied to remove
the effects of noise from the estimated normal vector.

Next, normal vectors are selected using the following proper-
ties of LiDAR sensors. (1) A LIDAR sensor projects light, detects the
reflected light, and generates a 3D point. Therefore, the angle be-
tween the direction of the normal vector and the reflection direc-

tion is less than 90 degrees. (ii) The LiDAR sensor is fixed on the z-
axis to provide information about the reference vertical direction.
Using these two characteristics, we can obtain highly accurate
normal direction information. The proposed normal estimation
method is compared with other methods, as shown in Fig. 2 below.
In this figure, the direction of a normal vector is represented as a
scalar value in the Hue, Saturation, Value (HSV) color space. Con-
sequently, if normal vectors have identical directions in an area,
the points in that region are painted with the same color.

N points
(N,6)

MLP for complexed spatial encoding

K tuples of (x, y, 2, ny, ny, n;) at
p; processed by Eqgs. (4) and (5)

(K.d)

K feature
in d dimension
corresponding to p;

Runforp; (i=1,..,N)

Encoded local map

(N, K, 2d)

Attentive pooling
&
Shared MLP

(N,d)

Figure 3: Structure of the NLFA module for local feature extraction using k-NN algorithm and six-channel point feature.
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(a) Case 1

(c) Case 3 A

(d) Case 4

Figure 4: Detailed structure of each feature extraction module. (a) Traditional RandLA-Net with normal input, and (b)-(d) a complexed module
including normal encoding.
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(a)

(b)

(©)

(d)

Figure 5: Normal estimation on LiDAR points with noise. (a) Our proposed normal estimation method, (b) our method with noise, (c) PCA, and (d) PCA

with noise.

Figure 2a is the result of the cross-product of vectors formed
by the positions of points, while Fig. 2b displays the normal vec-
tors estimated by the PCA method. Figure 2cillustrates the normal
vectors obtained using the proposed method, demonstrating that
the points on each object are consistently painted with the same
color. For example, consider the road in figure. The normal vectors
at the points on the road should be oriented upward, resulting in
the same or similar color being used to render the points. How-
ever, Fig. 2a and b show that some points are rendered with differ-
ent colors, indicating inconsistent estimation of normal vectors. In
contrast, the proposed method produces consistent normal vec-
tors on the road, rendering the points in blue, as shown in figure.

Figure 3 illustrates the structure of the NLFA module. The NLFA
module is performed twice between two layers of the encoder
in Fig. 1, followed by random sampling. Therefore, d-dimensional
feature vectors for N points are provided as input to the module.
A complex spatial encoding scheme is introduced to incorporate
normal information in the encoder, as shown in the figure.

Consider that the normal vector n; = (ny, ny, ny) for p; =
(Pui Pyi» Py;) has been computed using the proposed normal es-
timation method. The Euclidean distances from p to its neigh-
bors are computed and sorted in an incremental order. Next, the
K points from the sorted list’s first point are selected to produce
pi.....pfandnt, ... nt

This selection can be efficiently performed using a k-NN al-
gorithm. Here, p;? and nf are the jth point and its normal vec-
tor associated with p*. A local feature (p*, pf, p* — pt. Ip* — pfll)
(i=1,..., K) is constructed for relative position encoding. Here,

pt — pf is the relative position from p* to pf, and |p* — pf| is an

impact factor. These terms are encoded using an MLP introduced
in to yield the encoded redundant point position rf. Here, @ is the
concatenation operation:

ri=wmip(p' @ pf o (p' - B}) @ IP" - PiI). ©)
The normal vectors are used to form a local normal feature
(n*, nf,n* — nf,n*. n}) (i=1,..., K), where n* — nfindicates the

change of directions relative to n* and n® - nf represents the sim-
ilarity of the directions. These terms are encoded using the same
MLP as position component to reduce the encoded redundant
point normal I¥, as shown in equation (6):

l? — MLP (nk o nlie @ (nk — nf) @nk. n?) (6)

The computation of equations (4) and (5) is called complexed
spatial encoding, which yields a local feature encoded in (k, d)
shape. There are four different combinations of how to incorpo-
rate local position and normal features, which are further dis-
cussed in Section 3.3. Features in (k, 2d) are obtained when com-
bined with the network input. The encoding scheme is performed
for each N point, producing N features in (k, 2d) shape. Next, a
softmax function is used to efficiently pool the attentive features
from (N, k, 2d) features using equations (7) and (8):

st=g(ff w) )

K
fi=X (55 8. ®)

i=1
The score for each input feature is calculated as a mask sf. g()
consists of a shared MLP, followed by the softmax function. In ad-
dition, W represents the learnable weights of the shared MLP, and
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Table 1: Experiment on the test set of SemanticKITTI.

Other-
Truck Bicycle Motorcycle vehicle Vegetation Trunk

Other-

Size mloU Road Sidewalk Parking ground Building Car

Bicyclist Motorcyclist Fence Pole Traffic-sign

Terrain Person

Input

Methods

60.0 24.4 53.7 12.9 13.1 0.9 29.0 17.5 24.5

3.6

295 854 54.3 26.9 4.5 57.4 68.8 33 16.0 4.1

0.9M

64 x 2048

pixels

SqueezeSeg

67.6 45.8 17.7 73.7 81.8 134 18.5 17.9 14.0 71.8 35.8 60.2 20.1 251 3.9 411 20.2 36.5
4.0

88.6
91.4
91.8

0S5M 397
91.8

25M
S0M

SqueezeSegV?2

Darknet21

36.0 50.5

52.3

854 186 26.2 26.5 15.6 77.6 48.4 63.6 31.8 33.6

57.0 18.6 81.9

74.0

47.4

25.5 84.1 86.4 255 24.6 32.7 22.6 783 50.1 64.0 36.2 33.6 4.7 55.0 389 52.2

64.8

74.6

49.9

Darknet53

914 257 25.7 34.4 23.0 80.5 55,1 64.6 38.3 38.8 4.8 58.6 47.9 55.9

65.0 25.7 87.4

75.2

52.2

S0M

RangeNet++
PolarNet
PoinNet

7.2 61.3 51.8 57.5
0.0
0.0

7.2
4.6

93.8 229 40.3 30.1 285 84.0 65.5 67.8 49.2 48.2

61.7 28.5 90.0

14M 543  90.8 74.4

500k vxs
50k pts

3.7

2.4
5.0
49.2

12.9

13.1

0.2

0.8 31.0 0.1 17.6

0.3

414 463 0.1 0.2

1.4
5.6
20.4

15.8

35.7

61.6

14.6
7

3.5M

PoinNet++

8.9
47.7

16.9

1,0 0,2 0.2 46.5 0.9 30.0 0.9 13.1
26.0

0.9

53.7

62.3

18.7

41.8

2.6

20.1

56.3

38.9 81.4 66.8 49.2 49.2 48.2

25.8

942 40.1

86.9

73.7 60.3

53.9 907

1.2M
1.2M

RandLA-Net
Case 1

46.2 57.5

55.4

94.8 42.0 41.4 36.8 44.6 79.9 60.4 66.5 50,6 54.4

56.8 22.1 86.5

90.4 73.5

6.0

5

S0k pts with
normal

23.0 87.3 949 40,1 42.7 38.7 425 81.3 59.7 67.5 50.1 56.8 4.9 57.7 48.0 58.9
53.2

60.6

569 911 75.2
91.4

1.6M

Case 2

50.0 60.8

6.8 59.0

6.4

57.4

95.2 399 47.4 41.0 41.1 81.2 61.1 67.4

60.5 20.5 88.0

75.7

1.4M 57.9
2.4M

Case 3

49.1 60.7

60.2

95.0 38.6 47.0 37.0 41.8 81.5 60.8 67.3 51.3 56.5

59.5 10.8 88.9

74.5

90.9

56.8

Case 4

fkis the kth local features. The shared MLP produces N aggregated
features in d’ dimension (N, d').

2.3. Construction of NLFA structure

Four different structures of the network implementation were
proposed, as shown below in Fig. 4.

Case 1 displays a RandLA-Net structure consisting of two posi-
tion spatial encoding blocks using the position-based feature ex-
traction method. At the module’s start and end, the feature goes
through shared MLP, and the input feature is also concatenated
to the output feature by sSMLP. That only uses normal information
as network input.

Case 2 represents the improved structure that processes local
feature encoding through different MLP layers containing normal
feature extraction and merges the outputs to maintain the inde-
pendence of the local normal and position features.

Case 3 considers the effect of the correlation between the po-
sition and normal features, where the features are first combined
and processed through MLP encoding.

Case 4 processes each feature independently and combines
them at the final stage of each layer. And the normal feature ex-
traction block only performs normal encoding is named normal
spatial encoding.

Cases 2, 3, and 4, with complexed modules, including normal
feature encoding, perform better than Case 1 in most cases.

3. Experiments and Results

In this section, we will present experiments and analyze the re-
sults. We use the SemanticKITTI dataset (Behley et al, 2019),
which provides semantic annotations for all sequences.

3.1. Experimental settings

The SemanticKITTI dataset was used to train the proposed net-
work model. The dataset was segmented into 19 classes and sub-
divided into three sequence groups for training (sequences from
0 to 10 except 8 with 19130 scenes), validation (sequence 8 with
4071 scenes), and testing (sequences from 11 to 21 with 20351
scenes). The initial learning rate was set to 0.01 with a decay rate
of 0.95 for each epoch. The maximum number of epochs was set
to 100, and the model with the best validation results was chosen.
A value of 16 was used for k in the k-nearest search algorithm.
The segmentation performance of the proposed method was eval-
uated using the mIoU (Everingham et al., 2015) overall classes as
defined in equation (9):

c
1 TP,

mloU = — _ 9
C;Tpc-i—FPC—i-FNC ®)

where, C represents the number of classes, and TP, FP, and FN,
are the numbers of true positive, false positive, and false nega-
tive predictions for each class. A cross-entropy loss function with
class-wise weights was used for training, as defined in equation
(10):

Lee = weight - <—ln eXp(Zi)) (10)

il exp ()

where L. is the cross-entropy loss, and z; and z; are the ith and jth
values of the output, respectively. The weights were determined
to be inversely proportional to the inclusion ratio of the classes
in the training dataset. The experiments used a workstation with
NVIDIA RTX2080Ti (12GB) and TESLA T4 (16 GB) graphics cards.
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Figure 6: Comparison of the semantic segmentation results by RangeNet++, RandLA-Net, and the ground truth data on the validation set of
SemanticKITTI. The proposed method produces more points with the same labels (color) as the ground truth than the others.

3.2. Robustness of normal estimation against normal distributions with standard deviations of 0.032, 0.065,

noise

We have performed a few tests to demonstrate that the proposed
normal estimation method is robust against noise. We created
three point clouds by adding different noise levels sampled from

and 0.12 m to a point cloud without noise. Normal vectors were
estimated from each point cloud and compared. The proposed
method yielded 4.18, 5.37, and 6.55 degrees for each noise level
compared with the normal vectors without noise, whereas the tra-
ditional PCA showed 4.22, 6.22, and 8.76 degrees.
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Table 2: Experiment on each normal estimation method.

Normal estimation method mloU (%)
Cross-product 59.1
PCA 60.2
Intensity-assisted PCA + orientation correction 61.5

(ours)

Table 3: Experiment on normal feature encoder term.

Used normal term mloU (%)
n 57.7
n, n; 58.2
n n,n-n 58.4
n n,n-— n,n-n 61.5

Table 4: Experiment on K value of nearest neighbor search.

Scan per
K for nearest neighbor search mlIoU (%) second
K=4 48.8 17.5
K=8 57.3 6.8
K=16 61.5 4.9
K=32 57.1 2.8

Figure 5 shows the result of the estimated normal vectors using
the traditional PCA and the proposed method. The normal vec-
tors are encoded as color values and rendered at each point. Fig-
ure 5a and c show the normal vectors without noise estimated by
the proposed and the PCA methods, respectively. Figure 5b and d
show the normal vectors with a noise level of 0.065, estimated
by the proposed and PCA methods, respectively. The figure in-
dicates that the proposed method estimates consistent normal
vectors compared with the PCA method, implying that it is not
noise-sensitive.

3.3. SemanticKITTI benchmarks

The segmentation performance of the proposed method was eval-
uated using the SemanticKITTI dataset. Table 1 summarizes the
performance of the proposed methods with four NLFA structures

and recent approaches, including 2D view-based (projection-
based), 3D voxel-based, and point-based approaches. The results
show that incorporating normal information helps improve seg-
mentation performance, verified by Case 1. The normal vector is
a surface intrinsic property that indicates the orientation of the
surface of an object. Therefore, the distribution of normal vectors
at the points on the object can capture the structure of its ge-
ometric shape. The proposed semantic network model that uti-
lizes both position and normal vector information can outper-
form similar models that use only position information. because
more information about the object’s shape is incorporated dur-
ing training and prediction. Specifically, using normal vectors can
enhance the performance of the local feature extraction mod-
ule in the proposed network, resulting in improved segmentation
performance.

The Case 3 model achieved a mlIoU of 57.9%. Notably, the
proposed method demonstrated high performance for relatively
small objects: 95.2% for cars, 47.4% for bicycles, 41.0% for mo-
torcycles, 57.4% for bicycles, and 53.2% for pedestrians. This sug-
gests that the normal vector-based feature aggregation module
has enhanced recognition performance for small targets by lever-
aging the orientation information of normal vectors. A small
number of points define a small object due to its surface size.
Therefore, a limited number of points cannot sufficiently rep-
resent it. The network can use more object-shape information
by adding normal vectors, resulting in improved segmentation
performance.

The proposed method took approximately 3 s to preprocess nor-
mal generation for each scene on a CPU and 202 ms for segmenta-
tion for about 50 000 input points with RTX 2080 GPU. SqueezeSeg
1and 2 took 23 and 31 ms. RangeNet++ and PolarNet took 78 and
67 ms, while RandLA took 124 ms. The proposed method takes
longer than the other methods due to processing normal infor-
mation.

Figure 6 compares the segmentation results by RangeNet++,
RandLA-Net, the proposed method, and the ground truth data us-
ing Sequence 8. Compared with the ground truth, the proposed
method extracted more points with the same labels (color) and
detected more objects than the other methods.

As observed in the experimental results from scene 073,
the image-based method, RangeNet++, shows dimensional er-
rors during projection. In contrast, our proposed approach
yields highly accurate segmentation results, surpassing the

Figure 7: Autonomous vehicle equipped with Ouster-OS1 LiDAR.
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(a) Camera image

(b) LIDAR scan

Figure 8: Driving test on Ouster-OS1 LiDAR sensor.

performance of RandLA, which needs help to differentiate be-
tween road and parking areas effectively. Furthermore, the evalu-
ation on scene 877 demonstrates the robustness of our method in
accurately distinguishing road structures and type of vehicles, as
evidenced by the achieved segmentation results being in closest
proximity to the ground truth. These compelling results affirm the
superiority of our approach in addressing the segmentation chal-
lenges posed by complex urban scenes and underscore its poten-
tial for practical applications in various real-world scenarios.

3.4. Ablation study

In this section, we aim to investigate the impact of each term
within the proposed framework through an ablation study. All the
experiments described in this section were trained and tested on
the Sequence 8 validation set of SemanticKITTIL

Table 2 shows that using accurate normal vectors helps to im-
prove segmentation performance. The experiments show that the
cross-product method explained in Section 2.1 achieved a mloU
of 59.1%, and traditional PCA achieved a mloU of 60.2%. In con-
trast, the proposed method that produces refined normal vectors
achieved a mIoU of 61.5%. In contrast to the non-uniform direc-

tionality observed in the two previous methods, our novel nor-
mal estimation approach optimized for LiDAR has yielded uni-
formly oriented normal information. The result shows this uni-
formity in orientation has significantly contributed to enhanc-
ing network performance. This, in turn, signifies that our pro-
posed method enables the acquisition of highly reliable local
features.

Table 3 summarizes how each term of (n, nj,n— n;,n- n;) in-
fluenced the overall segmentation performance. When n was
used, the network achieved an mloU of 57.7%. The mloU value
grew as more terms were included, resulting in a mloU of 61.5%
when the four terms were used. This indicates that each term
in the tuple provided more information on the local geomet-
ric structure, helping the network extract each object’s intrinsic
features.

A new parameter introduced in the proposed method is k: the
number of neighboring points included in the normal estimation
step. The value of k directly affects the performance of normal
estimation. A small k value means a small number of points,
which may not represent the underlying geometry with sufficient
accuracy, leading to poor estimation. On the other hand, as k
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(a) Intensity

(b) Estimated normal

(¢) Semantic label

Figure 9: Visualization results of each process (a) show LiDAR intensity map, (b) estimated normal direction by our intensity guidance method, and (c)

semantic segmentation result.

increases, more points are considered, which can represent the
underlying geometric shape sufficiently. Therefore, more accurate
normal vectors can be estimated. However, there is a limit to in-
creasing k. A normal vector is a local feature that captures the ge-
ometric shape around a point. Too many points for large k would
cover a large area, which may negatively affect normal estima-
tion because they may include areas where the normal vectors
deviate significantly from the true one. The optimal k-value se-
lection depends on the point cloud’s distribution pattern, which
should be empirically determined through experimentation. Ta-
ble 4 shows the computational times and mIoU values concerning
k. The computational time increased proportionally to k. However,
the segmentation performance improved as k increased up to 16

and then dropped when k = 32. These findings indicate an optimal
k that influences the accuracy of normal estimation. In this work,
we chose k = 16 through this experiment.

This section illustrates the results of applying the trained net-
work for segmentation to LiDAR point cloud data obtained from
real-world autonomous vehicle operations. The segmentation
outcomes demonstrate the proposed framework’s efficacy in an
authentic driving environment. As shown in Fig. 7, experiments
employed a 64-channel Ouster-OS1 LiDAR, attached to the vehi-
cle’s roof, to capture the surrounding environment in a 360-degree
with 65536 points per scan. The driving experiments took place
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at GIST (Gwangju Institute of Science and Technology). Figure 8a
is camera image captured by mobile device, and Fig. 8b is corre-
sponding LiDAR scan by Ouster.

Figure 9 presents visualizations of each step of the proposed
framework. Figure 9a shows the normalized intensity of the point
cloud acquired from the Ouster LiDAR, and Fig. 9b shows the esti-
mation result following the application of our proposed technique
to Fig. 9a. The results from both Fig. 9a and b were employed as
inputs to the network, calculating semantic labels shown in Fig.
9c. The benchmark Case 3 network model is used for estimation.
Despite the disparity between the sensor LIDAR model for training
data (Velodyne, KITTI) and for acquiring driving data (Ouster), we
get high-quality semantic labels. Notably, the system effectively
differentiated objects of varying scales, such as cars and fences,
trunks and pedestrians, and bicycles.

4. Conclusions

This paper presents a novel semantic segmentation network
model that processes 3D LIDAR scans to enhance segmentation
performance. It builds upon RandLA-Net by introducing an effi-
cient method for embedding normal vectors in the network struc-
ture to improve local feature extraction performance. By combin-
ing a novel intensity-assisted normal estimation technique that
enhances the accuracy of normal estimation, the proposed net-
work outperforms existing methods by achieving a 4% higher
mloU score than the original RandLA-Net on the SemanticKITTI
benchmark tests. In particular, it demonstrated superior perfor-
mance to existing methods for small and dynamic objects, such
as a 21% improvement for bicycles, 4% for pedestrians, and 15.2%
for motorcycles compared with RandLA-Net.

This work primarily focuses on improving the performance of
semantic segmentation of point clouds generated by LiDAR sen-
sors using normal vectors. A new network structure that takes
normal vectors as input was proposed and integrated into the
RandLA network. The test results demonstrate that incorporating
normal features has enhanced the segmentation performance of
the RandLA network, which suggests its applicability to the latest
methods, and an improvement in semantic segmentation perfor-
mance can be anticipated.

The proposed method has two limitations. Firstly, normal esti-
mation, an essential step in the proposed method, inevitably in-
creases the overall computational time. In particular, the time for
normal estimation grows proportionally to the size of input points,
which prevents its use in real-time applications. Secondly, the pro-
posed method cannot utilize LiDAR sensors that do not provide
intensity. Although the proposed method works without intensity,
the lack of intensity compromises the accuracy of normal vector
estimation and subsequently negatively affects the segmentation
performance of the network. Overcoming these limitations is rec-
ommended for future work.
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