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Abstract 

As Light Detection and Ranging (LiDAR) sensors become incr easingl y pr ev alent in the field of autonomous driving, the need for ac- 
cur ate semantic se gmentation of three-dimensional points gro ws accor dingl y. To addr ess this c hallenge , w e propose a novel network 
model that enhances segmentation performance by utilizing normal v ector information. Firstl y, we pr esent a method to impr ov e 
the accuracy of normal estimation by using the intensity and reflection angles of the light emitted from the LiD AR sensor . Secondly, 
we introduce a novel local feature aggregation module that integrates normal vector information into the network to impr ov e the 
performance of local feature extraction. The normal information is closely related to the local structure of the shape of an object, 
which helps the network to associate unique features with corresponding objects. We propose four different structures for local fea- 
tur e a ggr egation, ev aluate them, and c hoose the one that shows the best performance . Experiments using the SemanticKITTI dataset 
demonstrate that the proposed architecture outperforms both the baseline models, RandLA-Net, and other existing methods, achiev- 
ing mean intersection over union of 57.9%. Furthermore, it shows highly competitive performance compared with RandLA-Net for 
small and dynamic objects in a real road en vironment. F or example, it yielded 95.2% for cars, 47.4% for bicycles, 41.0% for motorcycles, 
57.4% for bicycles, and 53.2% for pedestrians. 

Ke yw ords: normal vector estimation, semantic segmentation, LiDAR sensor, point cloud, local feature extraction, intensity 
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ist of symbols 

p : Specific point in LiDAR point cloud 

k : Index for each point of NLFA module input ( k =
1 , . . . , N). 

i : Index for each point of k -NN algorithm for p ( i =
1 , . . . , K). 

p i : i th -nearest point of point p
p k : k th point of NLFA module input 
p : ( x, y, z ) position of point p
n : ( n x , n y , n z ) normal of point p
p i : ( x, y, z ) position of point p i 
n i : ( n x , n y , n z ) normal of point p i 
I : Normalized LiDAR intensity at point p
I i : Normalized LiDAR intensity at point p i 
w 

m 

i : Function to calculate the weight for intensity at point
p i 

M : Covariance matrix for the neighborhood points p i 
M 

′ : Weighted covariance matrix for the neighborhood
points p i 

MLP(·) : Multi-lay er per ceptr on to extr act featur e 
r k i : Encoded redundant point position of neighbor i at p k 

l k i : Encoded redundant point normal of neighbor i at p k 

g(·) : Shared MLP follo w ed b y the softmax function 

W : learnable weights of the shared MLP 
f k : Extracted local feature of point p k 

f k i : Extracted local feature of neighbor i at p k 

s k : Score mask for fittering feature of neighbor i at p k 
i 
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C : Number of classes 
T P c : Numbers of true positive predictions for each classes 
F P c : Numbers of false positive predictions for each classes 
T N c : Numbers of true negative predictions for each classes 
F N c : Numbers of false negative predictions for each classes 
L ce : Cr oss entr opy loss of neur al network 
z i : i th values of neural network output 
z j : j th values of neural network output 
F OV : Vertical field of view of the LiDAR sensor 

. Introduction 

o advance the field of autonomous driving and facilitate its prac-
ical applications, a wide spectrum of research initiatives is cur-
 entl y underway. Addr essing the complexity and safety challenges
f urban autonomous driving, Noh and An ( 2022 ) introduced a re-
iable risk assessment fr ame work tested in real-world urban con-
itions . Meanwhile , Eom and Lee ( 2022 ) found that a function-
entered interface with visual and auditory feedback significantly
mpr ov es driv er mode awar eness for v ehicles at differ ent automa-
ion le v els. Researc h aimed at enhancing the performance and
obustness of autonomous driving through the use of LiDAR sen-
ors is also activ el y conducted. The LiDAR sensors excel in de-
iv ering high-pr ecision 360-degr ee distance measur ements, func-
ioning effectiv el y in low-light conditions, and gener ating thr ee-
imensional (3D) maps, making them a crucial component for
023 
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autonomous dri ving. The y gener ate 3D points that contain onl y 
geometric information about objects . T her efor e, it is necessary to 
r ecognize whic h point belongs to whic h object. This step is called 

semantic segmentation, which assigns the label of an object to 
the corresponding points. Various attempts have been made to 
address this problem, and a deep learning-based approach has 
ac hie v ed r emarkable success. 

3D point semantic segmentation can be br oadl y categorized 

into two main a ppr oac hes: pr ojection- and point-based methods.
Based on the projection method, the projection-based approach 

can be further divided into m ulti-vie w, spatial, volumetric, permu- 
tohedral, and hybrid methods. On the other hand, the point-based 

a ppr oac h can be divided into pointwise Multi-Layer Perceptron 

(MLP), point convolution, Recurr ent Neur al Network (RNN)-based,
and gr a ph-based methods . T his pa per r e vie wed r elated pa pers 
based on two broad categories, projection- and 3D point-based,
to make the presentation concise. 

1.1. Projection-based methods 

Conv olutional Neural Netw ork (CNN)-based deep learning mod- 
els hav e pr ov en successful for 2D image segmentation. Many re- 
searc hers hav e attempted to a ppl y these models to 3D point seg- 
mentation. In these a ppr oac hes, 3D points ar e tr ansformed into 
2D images and used as input to the network. The transforma- 
tion is given as equation ( 1 ) (W u, W an, et al., 2018 ; Wu, Zhou,
et al., 2019 ). Each point ( x, y, z ) is converted via a mapping to 
spherical coordinates ( u, v ) and finally to image coordinates, as 
defined by 

( 

u 
v 

) 

= 

( 

1 
2 

[
1 − arctan ( y, x ) π−1 

]
w [

1 − ( arcsin 

(
zr −1 

) + F OV up ) F OV 

−1 
]

h 

) 

, (1) 

wher e ( w, h ) ar e the height and width of the ima ge r epr esentation 

of the 3D point cloud, F OV = F OV up + F OV down is the vertical field 

of view of the LiDAR sensor, and r is the depth of a point. 
W u et al . (W u, W an, et al., 2018 ; Wu, Zhou, et al., 2019 ) present

a fully convolutional encoder-decoder neural network through 

gener ating a 360-degr ee ima ge fr om a point cloud via spheri- 
cal projection and predicted semantic labels “ac hie ving a mean 

intersection over union (mIoU) score of 37.2% and 44.9% in a 
benchmark test”. Milioto et al . ( 2019 ) proposed a high-performance 
arc hitectur e called RangeNet, based on Darknet53 (Redmon & 

Farhadi, 2018 ) backbone, with k -Nearest Neighbor ( k -NN)-based 

noise elimination as post-pr ocessing. It ac hie v ed an mIoU score 
of 52.5% and sho w ed high performance with a speed of 12 fps.
Ho w e v er, pr ojecting 3D points to 2D images and re-projecting 
the predicted 2D labels to the point cloud can cause infor- 
mation loss and err ors, ultimatel y compr omising segmentation 

performance. 
Voxel-based a ppr oac hes offer another solution to the pr oblem 

of 3D point segmentation. Voxels are widely used to handle com- 
plex 3D shapes in rendering, segmentation, and reconstruction. 
Various a ppr oac hes hav e been pr oposed to addr ess the c hallenge 
of 3D point segmentation using voxels. In 3D U-Net (Çiçek et al.,
2016 ), a voxel-based convolutional segmentation network for gen- 
eral 3D point clouds was introduced. Zhou and Tuzel ( 2018 ) pre- 
sented an effective method to segment sparse LiDAR point clouds.
Hilbig et al . ( 2023 ) ac hie v ed performance impr ov ement by using a 
geometric feature called a signed distance field for a 3D voxel net- 
work. Another method, i.e., Deep FusionNet proposed by Zhang 
et al . ( 2020 ) aims to minimize information loss during voxelization 

b y combining v o xel and point features. Alternati vely, a novel grid 

in polar form was proposed to consider more points inside than 
he conventional voxel-based method by le v er a ging the c har ac-
eristics of LiDAR sensors. In addition, a ring CNN arc hitectur e,
alled PolarNet, was de v eloped to pr ocess suc h a grid efficientl y.
t ac hie v ed an mIoU of 54.3% in the benchmark test (Zhang et al.,
020 ). Ho w e v er, it r equir ed a lot of memory and computation time
nd also suffered from voxel projection errors. Despite its effec-
i veness, the vo xel-based method may encounter errors during
 oxelization. One w ay to reduce this problem is to use smaller
rids. Ho w e v er, it can increase the computational cost because of
he 3D convolution step in the neural network. 

.2. Point-based methods 

D points can be dir ectl y utilized in segmentation. PointNet
Qi et al., 2017a ), the point-based neighborhood feature learning

ethod, processes point clouds and extracts features through 

ully connected la yers . P ointNet ++ (Qi et al., 2017b ) improved
pon PointNet by employing hier arc hical pooling and context rep-
esentation. Ho w ever, neither of these methods can handle large-
cale point clouds obtained by LiDAR sensors due to the compu-
ation cost growing proportionally to the input size. A k -NN-based
ocal feature extraction technique (Luo et al., 2021 ) was proposed
o enhance segmentation performance but still suffered from the 
omputational cost issue. To solve this problem, Hu et al. ( 2020 )
r oposed RandLA-Net, whic h uses a r andom sampling method
nd introduces a local feature aggregation module to process 
arge point clouds and dramatically improve segmentation per- 
ormance efficiently. In particular, it overcame the limitations of 
ointNet and ac hie v ed an mIoU of 53.9% in the benchmark test.
CF-Net (Fan et al., 2021 ) presents a new local feature extraction
ethod based on polar r epr esentation. 
Benchmark tests have demonstrated that the point-based 

ethods have the potential to be used for semantic segmenta- 
ion in autonomous driving. Ho w e v er, they still need to impr ov e
he segmentation of various objects critical for driving safely, such
s people and bicycles, which are small in size. 

.3. Contributions 

nspired by RandLA-Net, we proposed a neural network model 
hat utilizes 3D points and surface normal vectors to enhance seg-

entation performance . Here , RandLA was selected as the base
rc hitectur e due to its reputation for robust performance across
ifferent LiDAR sensor types. While 3D points r epr esent the sha pe
f an object, normal vectors provide information about the ori-
ntation of the object’s local shape at each point. Using inten-
ity information, we de v eloped a nov el normal estimation method
rom a point cloud. We introduced a normal local feature aggre-
ation (NLFA) module that combines 3D points and normal vec-
ors in the encoding process to extract local features that aid in
egmentation. 

The surface normal vectors are very useful for recognizing the
eatures of objects within the LiDAR point cloud. It contains the
rientation of the point, thr ough whic h it is possible to obtain cur-
 atur e information of the object. As a result, the object’s appear-
nce can be effectiv el y gr asped, and information on a small ob-
ect with a significant change in curvature can be efficiently ob-
ained. Mor eov er, we de v eloped a principal component anal ysis
PCA)-based normal estimation method that utilizes the reflec- 
ion intensity and physical c har acteristics of LiDAR sensors. Fi-
all y, we compar ed the pr oposed method with others using the
emanticKITTI datasets, and our r esults demonstr ated better per-
ormance than other methods. 
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F igure 1: F r ame work of the pr oposed network. 
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The main contributions are 3-fold: 

(i) We enhance the ov er all segmentation performance of 3D
points by using a local featur e a ggr egation module that in-
cor por ates both 3D points and normal vectors. 

(ii) By utilizing normal features, we improve the recognition
rate of small objects, such as humans , cars , and bicycles ,
whic h ar e important to autonomous driving. 

(iii) We propose a novel normal estimation method that uti-
lizes the physical properties of LiDAR sensors and inten-
sity information to estimate surface normal vectors. Also,
this method works r obustl y a gainst irr egular noise of LiDAR
sensors. 

. Proposed Method 

his section describes the proposed framework. The ov er all struc-
ure of the proposed method is shown in Fig. 1 . A point cloud gen-
rated by a LiDAR is processed as input. The normal vectors at
ach point in the point cloud are estimated using the intensity-
ssisted method of normal vector estimation. A tuple is con-
tructed using the position, normal vector, and intensity 7 chan-
el ( x, y, z, n x , n y , n z , i ) v alue at eac h point. N tuples ar e then cr e-
ted and fed into the segmentation network. An encoder-decoder
tructure and a skip connection are used for the network. The
ront half of the network, enclosed in the dotted box, is an encoder.
t consists of the first five layers next to the input layer, which in-
lude a novel NLFA module and a random sampling lay er betw een
he point sub-feature, and the decoder, composed of the next five
ay ers follo wing the encoder, has four up-samples with MLP. The
eader, located at the end of the network, has a simple Fully Con-
ected (FC) layer with a dropout. An input of N points is given to
he encoder. Each of the five layers of the encoder processes the
nput using a NLFA module and shrinks the input data size with
 4-fold decimation ratio by random sampling, while the dimen-
ion of extr acted featur es at each point increases, assigning more
eatures to the point. The decoder has a symmetric structure to
he encoder, with two fully connected layers attached to its end,
hic h pr oduce N points labeled with n classes. 

.1. Intensity-assisted normal vector estimation 

ormal vectors can be estimated from 3D points using traditional
CA (Hoppe et al., 1992 ). 

M = 

K ∑ 

i =1 

( p i − p ) ( p i − p ) T . (2)

Suppose that p is a point of interest and p i ( i = 1 , . . . , K ) are the
oints in the nearest neighborhood of p. Then, the normal vector
t p corresponds to the eigenvector that has the highest eigen-
alue of the covariance matrix M calculated for p i . The covariance
atrix is computed by equation ( 2 ). 
Ho w e v er, the accur acy of this method for estimating normal

ectors is sensitive to the value of K , the distribution pattern of
oints , and noise . 

To impr ov e the r obustness of normal v ector estimation, P ark
t al. ( 2020 ) proposed the weighted method utilizing LiDAR inten-
ity information. Weights w 

m 

i are calculated by exponential of
ifference of I intensity for each neighborhood point, as shown

n equation ( 3 ), and a weighted covariance matrix M 

′ is computed
sing equation ( 4 ): 

w 

m = exp ( ‖ I i − I‖ ) (3)
i 
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Figure 2: Normal estimation results in HSV color space on the KITTI Velodyne odometry dataset using (a) cross-product method, (b) PCA without 
intensity information, and (c) our proposed method considering the LiDAR features. 
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′ = 

1 ∑ K 
i −1 w 

m 

i 

K ∑ 

i =1 

w 

m 

i ( p i − p ) ( p i − p ) T . (4) 

Additionally, a median filter (Huber, 2004 ) is applied to remove 
the effects of noise from the estimated normal vector. 

Next, normal v ectors ar e selected using the following pr oper- 
ties of LiDAR sensors. (i) A LiDAR sensor projects light, detects the 
r eflected light, and gener ates a 3D point. Ther efor e, the angle be- 
tween the direction of the normal vector and the reflection direc- 
Figure 3: Structure of the NLFA module for local feature extraction using k -NN
ion is less than 90 degrees. (ii) The LiDAR sensor is fixed on the z -
xis to provide information about the r efer ence v ertical dir ection.
sing these two c har acteristics, we can obtain highly accurate
ormal direction information. The proposed normal estimation 

ethod is compared with other methods, as shown in Fig. 2 below.
n this figure, the direction of a normal vector is represented as a
calar value in the Hue, Saturation, Value (HSV) color space. Con-
equentl y, if normal v ectors hav e identical dir ections in an area,
he points in that region are painted with the same color. 
 algorithm and six-channel point feature. 

ute of Science & Technology user on 09 Septem
ber 2024
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Figure 4: Detailed structure of each feature extraction module. (a) Traditional RandLA-Net with normal input, and (b)–(d) a complexed module 
including normal encoding. 
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Figure 5: Normal estimation on LiDAR points with noise. (a) Our proposed normal estimation method, (b) our method with noise, (c) PCA, and (d) PCA 

with noise. 
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Figure 2 a is the result of the cross-product of vectors formed 

by the positions of points, while Fig. 2 b displays the normal vec- 
tors estimated by the PCA method. Figure 2 c illustrates the normal 
vectors obtained using the proposed method, demonstrating that 
the points on each object ar e consistentl y painted with the same 
color. For example, consider the road in figure . T he normal vectors 
at the points on the road should be oriented upw ar d, resulting in 

the same or similar color being used to render the points. How- 
e v er, Fig. 2 a and b show that some points are rendered with differ- 
ent colors, indicating inconsistent estimation of normal vectors. In 

contr ast, the pr oposed method pr oduces consistent normal v ec- 
tors on the r oad, r endering the points in blue, as shown in figure. 

2.2. NLFA module 

Figure 3 illustrates the structure of the NLFA module . T he NLFA 

module is performed twice between two layers of the encoder 
in Fig. 1 , follo w ed b y r andom sampling. Ther efor e, d -dimensional 
featur e v ectors for N points ar e pr o vided as input to the module .
A complex spatial encoding scheme is introduced to incor por ate 
normal information in the encoder, as shown in the figure. 

Consider that the normal vector n i = ( n xi , n yi , n zi ) for p i = 

( p xi , p yi , p zi ) has been computed using the proposed normal es- 
timation method. The Euclidean distances from p to its neigh- 
bors are computed and sorted in an incremental order. Next, the 
K points from the sorted list’s first point are selected to produce 
p k 1 , . . . , p 

k 
i and n 

k 
1 , . . . , n 

k 
i . 

This selection can be efficiently performed using a k -NN al- 
gorithm. Here, p k j and n 

k 
j are the j th point and its normal vec- 

tor associated with p k . A local feature ( p k , p k i , p 
k − p k i , ‖ p k − p k i ‖ ) 

( i = 1 , . . . , K) is constructed for r elativ e position encoding. Here,
p k − p k i is the r elativ e position fr om p k to p k i , and ‖ p k − p k i ‖ is an
mpact factor. These terms are encoded using an MLP introduced
n to yield the encoded redundant point position r k i . Here, ⊕ is the
oncatenation operation: 

r k i = MLP 
(

p k ⊕ p k i ⊕
(

p k − p k i 
)

⊕ ‖ p k − p k i ‖ 
)

. (5) 

The normal v ectors ar e used to form a local normal feature
 n 

k , n 

k 
i , n 

k − n 

k 
i , n 

k · n 

k 
i ) ( i = 1 , . . . , K) , where n 

k − n 

k 
i indicates the

hange of directions relative to n 

k and n 

k · n 

k 
i represents the sim- 

larity of the directions . T hese terms are encoded using the same
LP as position component to reduce the encoded redundant 

oint normal l k i , as shown in equation ( 6 ): 

l k i = MLP 
(
n 

k ⊕ n 

k 
i ⊕

(
n 

k − n 

k 
i 

)
⊕ n 

k · n 

k 
i 

)
. (6) 

The computation of equations ( 4 ) and ( 5 ) is called complexed
patial encoding, which yields a local feature encoded in ( k , d )
hape . T here are four different combinations of how to incorpo-
ate local position and normal features, which are further dis-
ussed in Section 3.3 . Features in ( k , 2 d ) are obtained when com-
ined with the network input. The encoding scheme is performed
or each N point, producing N features in ( k , 2 d ) shape. Next, a
oftmax function is used to efficiently pool the attentive features
rom ( N , k , 2 d ) features using equations ( 7 ) and ( 8 ): 

s k i = g 
(

f k i , W 

)
(7) 

f i = 

K ∑ 

i =1 

(
f k i , s 

k 
i 

)
. (8) 

The score for each input feature is calculated as a mask s k i . g()
onsists of a shared MLP, follo w ed b y the softmax function. In ad-
ition, W r epr esents the learnable weights of the shared MLP, and
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f k i is the k th local features . T he shared MLP produces N aggregated
eatures in d ′ dimension ( N , d ′ ). 

.3. Construction of NLFA structure 

our different structures of the network implementation were
roposed, as shown below in Fig. 4 . 

Case 1 displays a RandLA-Net structure consisting of two posi-
ion spatial encoding blocks using the position-based feature ex-
raction method. At the module’s start and end, the feature goes
hr ough shar ed MLP, and the input feature is also concatenated
o the output feature by sMLP. That only uses normal information
s network input. 

Case 2 r epr esents the impr ov ed structur e that processes local
eature encoding through different MLP layers containing normal
eatur e extr action and mer ges the outputs to maintain the inde-
endence of the local normal and position features. 

Case 3 considers the effect of the correlation between the po-
ition and normal featur es, wher e the featur es ar e first combined
nd processed through MLP encoding. 

Case 4 processes each feature independently and combines
hem at the final stage of each layer. And the normal feature ex-
r action bloc k onl y performs normal encoding is named normal
patial encoding. 

Cases 2, 3, and 4, with complexed modules, including normal
eature encoding, perform better than Case 1 in most cases. 

. Experiments and Results 

n this section, we will present experiments and analyze the re-
ults. We use the SemanticKITTI dataset (Behley et al., 2019 ),
hic h pr o vides semantic annotations for all sequences . 

.1. Experimental settings 

he SemanticKITTI dataset was used to train the proposed net-
ork model. The dataset was segmented into 19 classes and sub-
ivided into three sequence groups for training (sequences from
 to 10 except 8 with 19 130 scenes), validation (sequence 8 with
071 scenes), and testing (sequences from 11 to 21 with 20 351
cenes). The initial learning rate was set to 0.01 with a decay rate
f 0.95 for each epoch. The maximum number of epochs was set
o 100, and the model with the best v alidation r esults was chosen.
 value of 16 was used for k in the k -nearest search algorithm.
he segmentation performance of the proposed method was e v al-
ated using the mIoU (Everingham et al., 2015 ) ov er all classes as
efined in equation ( 9 ): 

mIoU = 

1 
C 

C ∑ 

c =1 

T P c 
T P C + F P C + F N c 

(9)

her e, C r epr esents the number of classes, and T P c , F P C , and F N c

re the numbers of true positive, false positive, and false nega-
iv e pr edictions for eac h class. A cr oss-entr opy loss function with
lass-wise w eights w as used for training, as defined in equation
 10 ): 

L ce = weight ·
( 

− ln 

exp 

(
z j 

)
∑ N 

i =1 exp ( z i ) 

) 

(10)

here L ce is the cross-entropy loss, and z i and z j are the i th and j th
alues of the output, respectively. The w eights w ere determined
o be inv ersel y pr oportional to the inclusion ratio of the classes
n the training dataset. The experiments used a workstation with
VIDIA RTX2080Ti (12GB) and TESLA T4 (16 GB) gr a phics cards. 
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Figure 6: Comparison of the semantic segmentation results by RangeNet ++ , RandLA-Net, and the ground truth data on the validation set of 
SemanticKITTI. The proposed method produces more points with the same labels (color) as the ground truth than the others. 
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3.2. Robustness of normal estimation against 
noise 

We have performed a few tests to demonstrate that the proposed 

normal estimation method is robust against noise. We created 

three point clouds by adding different noise levels sampled from 
d

ormal distributions with standard deviations of 0.032, 0.065,
nd 0.12 m to a point cloud without noise. Normal vectors were
stimated from each point cloud and compared. The proposed 

ethod yielded 4.18, 5.37, and 6.55 degrees for each noise le v el
ompared with the normal vectors without noise, whereas the tra-
itional PCA sho w ed 4.22, 6.22, and 8.76 degrees. 
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Table 2: Experiment on each normal estimation method. 

Normal estimation method mIoU (%) 

Cr oss-pr oduct 59.1 
PCA 60.2 
Intensity-assisted PCA + orientation correction 
(ours) 

61.5 

Table 3: Experiment on normal feature encoder term. 

Used normal term mIoU (%) 

n 57.7 
n , n i 58.2 
n , n i , n − n i 58.4 
n , n i , n − n i , n · n i 61.5 

Table 4: Experiment on K value of nearest neighbor search. 

K for nearest neighbor search mIoU (%) 
Scan per 
second 

K = 4 48.8 17.5 
K = 8 57.3 6.8 
K = 16 61.5 4.9 
K = 32 57.1 2.8 
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Figure 5 shows the result of the estimated normal vectors using
he traditional PCA and the proposed method. The normal vec-
ors are encoded as color values and rendered at each point. Fig-
re 5 a and c show the normal vectors without noise estimated by
he proposed and the PC A methods , r espectiv el y. Figur e 5 b and d
how the normal vectors with a noise le v el of 0.065, estimated
y the proposed and PC A methods , respectively. T he figure in-
icates that the proposed method estimates consistent normal
 ectors compar ed with the PCA method, implying that it is not
oise-sensitive. 

.3. SemanticKITTI benchmarks 

he segmentation performance of the proposed method was e v al-
ated using the SemanticKITTI dataset. Table 1 summarizes the
erformance of the proposed methods with four NLFA structures
igure 7: Autonomous vehicle equipped with Ouster-OS1 LiDAR. 
nd recent approaches, including 2D view-based (projection-
ased), 3D voxel-based, and point-based a ppr oac hes . T he results
how that incor por ating normal information helps impr ov e seg-
entation performance, verified by Case 1. The normal vector is
 surface intrinsic property that indicates the orientation of the
urface of an object. Ther efor e, the distribution of normal vectors
t the points on the object can ca ptur e the structur e of its ge-
metric shape . T he proposed semantic network model that uti-
izes both position and normal vector information can outper-
orm similar models that use only position information. because

ore information about the object’s shape is incorporated dur-
ng training and prediction. Specifically, using normal vectors can
nhance the performance of the local feature extraction mod-
le in the pr oposed network, r esulting in impr ov ed segmentation
erformance. 

The Case 3 model ac hie v ed a mIoU of 57.9%. Notably, the
roposed method demonstrated high performance for relatively
mall objects: 95.2% for cars, 47.4% for bicycles, 41.0% for mo-
or c ycles, 57.4% for bic ycles, and 53.2% for pedestrians. This sug-
ests that the normal vector-based feature aggregation module
as enhanced recognition performance for small targets by lever-
ging the orientation information of normal vectors. A small
umber of points define a small object due to its surface size.
her efor e, a limited number of points cannot sufficiently rep-
esent it. The network can use more object-shape information
y adding normal v ectors, r esulting in impr ov ed segmentation
erformance. 

The proposed method took approximately 3 s to preprocess nor-
al generation for each scene on a CPU and 202 ms for segmenta-

ion for about 50 000 input points with RTX 2080 GPU. SqueezeSeg
 and 2 took 23 and 31 ms. RangeNet ++ and PolarNet took 78 and
7 ms, while RandLA took 124 ms. The proposed method takes
onger than the other methods due to processing normal infor-

ation. 
Figur e 6 compar es the segmentation r esults by RangeNet ++ ,

andLA-Net, the proposed method, and the ground truth data us-
ng Sequence 8. Compared with the ground truth, the proposed

ethod extracted more points with the same labels (color) and
etected more objects than the other methods. 

As observed in the experimental results from scene 073,
he image-based method, RangeNet ++ , shows dimensional er-
 ors during pr ojection. In contr ast, our pr oposed a ppr oac h
ields highly accurate segmentation results, surpassing the
hnology user on 09 Septem
ber 2024
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Figure 8: Driving test on Ouster-OS1 LiDAR sensor. 
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performance of RandLA, which needs help to differentiate be- 
tween road and parking areas effectively. Furthermore, the evalu- 
ation on scene 877 demonstrates the robustness of our method in 

accur atel y distinguishing r oad structur es and type of vehicles, as 
evidenced by the achieved segmentation results being in closest 
proximity to the ground truth. These compelling results affirm the 
superiority of our a ppr oac h in addr essing the segmentation c hal- 
lenges posed by complex urban scenes and underscore its poten- 
tial for practical applications in various real-world scenarios. 

3.4. Ablation study 

In this section, we aim to investigate the impact of each term 

within the proposed framework through an ablation study. All the 
experiments described in this section wer e tr ained and tested on 

the Sequence 8 validation set of SemanticKITTI. 
Table 2 shows that using accurate normal vectors helps to im- 

pr ov e segmentation performance. The experiments show that the 
cr oss-pr oduct method explained in Section 2.1 ac hie v ed a mIoU 

of 59.1%, and traditional PCA achieved a mIoU of 60.2%. In con- 
tr ast, the pr oposed method that pr oduces r efined normal v ectors 
ac hie v ed a mIoU of 61.5%. In contrast to the non-uniform direc- 
ionality observed in the two previous methods, our novel nor-
al estimation a ppr oac h optimized for LiDAR has yielded uni-

ormly oriented normal information. The result shows this uni- 
ormity in orientation has significantly contributed to enhanc- 
ng network performance . T his , in turn, signifies that our pro-
osed method enables the acquisition of highly reliable local 
eatures. 

Table 3 summarizes how each term of ( n , n i , n − n i , n · n i ) in-
uenced the ov er all segmentation performance. When n was 
sed, the network ac hie v ed an mIoU of 57.7%. The mIoU value
r e w as more terms were included, resulting in a mIoU of 61.5%
hen the four terms were used. This indicates that each term

n the tuple provided more information on the local geomet- 
ic structure, helping the network extract each object’s intrinsic
eatures. 

A ne w par ameter intr oduced in the pr oposed method is k : the
umber of neighboring points included in the normal estimation 

tep. The value of k dir ectl y affects the performance of normal
stimation. A small k value means a small number of points,
hich may not represent the underlying geometry with sufficient 
ccuracy, leading to poor estimation. On the other hand, as k
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Figure 9: Visualization results of each process (a) show LiDAR intensity map, (b) estimated normal direction by our intensity guidance method, and (c) 
semantic segmentation result. 
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ncr eases, mor e points ar e consider ed, whic h can r epr esent the
nderl ying geometric sha pe sufficientl y. Ther efor e, mor e accur ate
ormal vectors can be estimated. Ho w e v er, ther e is a limit to in-
reasing k . A normal vector is a local feature that captures the ge-
metric sha pe ar ound a point. Too man y points for lar ge k would
ov er a lar ge ar ea, whic h may negativ el y affect normal estima-
ion because they may include ar eas wher e the normal vectors
e viate significantl y fr om the true one . T he optimal k -value se-

ection depends on the point cloud’s distribution pattern, which
hould be empirically determined through experimentation. Ta-
le 4 shows the computational times and mIoU values concerning
 . The computational time incr eased pr oportionall y to k . Ho w e v er,
he segmentation performance impr ov ed as k increased up to 16
nd then dropped when k = 32. These findings indicate an optimal
 that influences the accuracy of normal estimation. In this work,
e chose k = 16 through this experiment. 

.5. Road test 
his section illustrates the results of a ppl ying the tr ained net-
ork for segmentation to LiDAR point cloud data obtained from

eal-world autonomous vehicle operations . T he segmentation
utcomes demonstrate the proposed framework’s efficacy in an
uthentic driving environment. As shown in Fig. 7 , experiments
mplo y ed a 64-channel Ouster-OS1 LiDAR, attached to the vehi-
le’s r oof, to ca ptur e the surr ounding envir onment in a 360-degr ee
ith 65 536 points per scan. The driving experiments took place
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at GIST (Gwangju Institute of Science and Tec hnology). Figur e 8 a 
is camer a ima ge ca ptur ed by mobile de vice, and Fig. 8 b is corr e- 
sponding LiDAR scan by Ouster. 

Figure 9 presents visualizations of each step of the proposed 

fr ame work. Figur e 9 a shows the normalized intensity of the point 
cloud acquired from the Ouster LiDAR, and Fig. 9 b shows the esti- 
mation result following the application of our proposed technique 
to Fig. 9 a. The results from both Fig. 9 a and b w ere emplo y ed as 
inputs to the network, calculating semantic labels shown in Fig.
9 c. The benchmark Case 3 network model is used for estimation.
Despite the disparity between the sensor LiDAR model for training 
data (Velodyne, KITTI) and for acquiring driving data (Ouster), we 
get high-quality semantic labels. Notably, the system effectively 
differentiated objects of varying scales, such as cars and fences,
trunks and pedestrians, and bicycles. 

4. Conclusions 

This pa per pr esents a nov el semantic segmentation network 
model that processes 3D LiDAR scans to enhance segmentation 

performance. It builds upon RandLA-Net by introducing an effi- 
cient method for embedding normal vectors in the network struc- 
tur e to impr ov e local featur e extr action performance. By combin- 
ing a novel intensity-assisted normal estimation technique that 
enhances the accuracy of normal estimation, the proposed net- 
work outperforms existing methods by ac hie ving a 4% higher 
mIoU score than the original RandLA-Net on the SemanticKITTI 
benchmark tests. In particular, it demonstrated superior perfor- 
mance to existing methods for small and dynamic objects, such 

as a 21% impr ov ement for bicycles, 4% for pedestrians, and 15.2% 

for motor c ycles compared with RandLA-Net. 
This work primarily focuses on improving the performance of 

semantic segmentation of point clouds generated by LiDAR sen- 
sors using normal v ectors. A ne w network structur e that takes 
normal vectors as input was proposed and integrated into the 
RandLA network. The test r esults demonstr ate that incor por ating 
normal features has enhanced the segmentation performance of 
the RandLA network, which suggests its applicability to the latest 
methods, and an impr ov ement in semantic segmentation perfor- 
mance can be anticipated. 

The proposed method has two limitations. Firstly, normal esti- 
mation, an essential step in the proposed method, ine vitabl y in- 
cr eases the ov er all computational time. In particular, the time for 
normal estimation grows proportionally to the size of input points,
whic h pr e v ents its use in real-time applications. Secondly, the pro- 
posed method cannot utilize LiDAR sensors that do not provide 
intensity. Although the proposed method works without intensity, 
the lack of intensity compromises the accuracy of normal vector 
estimation and subsequently negatively affects the segmentation 

performance of the netw ork. Over coming these limitations is rec- 
ommended for future work. 
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