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Tackling the Challenges in Scene Graph Generation
With Local-to-Global Interactions

Sangmin Woo

Abstract—1In this work, we seek new insights into the under-
lying challenges of the scene graph generation (SGG) task.
Quantitative and qualitative analysis of the visual genome (VG)
dataset implies: 1) ambiguity: even if interobject relationship
contains the same object (or predicate), they may not be visually
or semantically similar; 2) asymmetry: despite the nature of
the relationship that embodied the direction, it was not well
addressed in previous studies; and 3) higher-order contexts:
leveraging the identities of certain graph elements can help
generate accurate scene graphs. Motivated by the analysis,
we design a novel SGG framework, Local-to-global interaction
networks (LOGINs). Locally, interactions extract the essence
between three instances of subject, object, and background,
while baking direction awareness into the network by explicitly
constraining the input order of subject and object. Globally,
interactions encode the contexts between every graph component
(i.e., nodes and edges). Finally, Attract and Repel loss is utilized
to fine-tune the distribution of predicate embeddings. By design,
our framework enables predicting the scene graph in a bottom-up
manner, leveraging the possible complementariness. To quantify
how much LOGIN is aware of relational direction, a new diagnos-
tic task called Bidirectional Relationship Classification (BRC) is
also proposed. Experimental results demonstrate that LOGIN can
successfully distinguish relational direction than existing methods
(in BRC task), while showing state-of-the-art results on the VG
benchmark (in SGG task).

Index Terms— Bidirectional relationship classification (BRC),
scene graph generation, scene understanding, visual relationship
detection.

I. INTRODUCTION
O UNDERSTAND a scene, inferring underlying prop-
erties such as the relationship between entities (in this
work, we use the term “entity” to describe individual detected
object instances to distinguish them from “object” in the
semantic sense) is just as important as observing explicit
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information about what and where entities are. However, most
state-of-the-art visual recognition models focus on detecting
individual entities in isolation [1]-[5], and they are still
far from reaching the goal of capturing their relationships.
In an effort to incorporate the relational reasoning ability
into the model, a scene graph representation—a structured
description that captures semantic summaries of entities and
their relationships—has been presented recently [6]. Since
then, a number of works have proposed deep network-based
approaches for generating the scene graphs, confirming its
importance to the field [7]-[13]. While scene graph represen-
tation holds tremendous promise, extracting scene graphs from
images is known to be challenging.

In Section III, we first explore what the fundamental chal-
lenges of the task are as follows.

1) Ambiguity: We postulate the main cause of ambiguity
is due to high intra- and low interclass variability of
predicates. Although there is little visual difference
between the images, the predicates can be different, and
vice versa [see Fig. 1(a)]. Therefore, the model should
be aware of the inconsistency between the visual and the
actual predicate. In other words, we require a model that
can recognize a subtle visual difference to differentiate
the predicates and learn that the predicates can be the
same in a completely different visual context.

2) Asymmetry: By nature, a relationship has a direction.
Also, we can always define relationships in both direc-
tions. Nevertheless, we see that understanding the rela-
tional direction has not been well established in previous
studies, and there is a lack of consideration on how
to effectively address it. In this work, we are particu-
larly interested in bidirectional relationships (BRs) with
asymmetry [see Fig. 1(b)]. To analyze how much the
model understands relational direction, we introduce a
new diagnostic task called BR classification (BRC).

3) Higher-order contexts: Often relations need to be con-
sidered with the contextual dependency of the whole
scene beyond being defined as a pair-wise relation.
Suppose there is a horse close to a man [see Fig. 1(c)].
Without any other clue, one might say that their rela-
tionship is “next to.” However, if the presence of
other entities and relationships (e.g., hay, eating)
is known, the relationship between the horse and the
man is more likely to be “feeding.” To examine
the benefits of higher-order contexts, we quantitatively
analyze the amount of information gain given each graph
component.

In Section IV, with the aforementioned issues in mind,
we present a novel framework, Local-to-Global Interaction
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Fig. 1.

Challenges in scene graph generation. (a) Ambiguity: different predicates may be visually similar (first two), and the same predicate may not be

visually similar (last two). (b) Asymmetry: relationships have direction, and those relationships in the opposite direction are mostly different (asymmetric).
(c) Higher-order contexts: the other components in the scene serve as contexts while predicting the relationship. Data statistics are based on the VG

dataset [14].

Networks (LOGINs). First, LOGIN highlights informative
representation between three entity-level instances by weigh-
ing how much each pair-wise interaction contributes to rela-
tional representation. Second, direction awareness is baked
into the model by fusing feature instances in a constrained
order (e.g., subject precedes object). Third, LOGIN considers
interaction between every scene graph element. The infor-
mative contexts essential to accurately predict each graph
component are propagated to every graph component. Last
but not least, we introduce Attract and Repel Loss, which
effectively scales the variability within and between classes
making the model robust against ambiguity. We explain this
in more detail in Section IV-D. By design, LOGIN effectively
leverages the complementariness of entity-level interactions
and graph-level interactions.

Finally, in Section V, we evaluate our final model on
both the visual genome (VG) benchmark and the BRC task.
By ablating each network design, we observe that all design
principles cooperate in generating visually grounded scene
graphs. Unifying all design principles into a single framework,
LOGIN achieved state-of-the-art results on the VG benchmark
while outperforming competing approaches by a comfortable
margin on the BRC task.

Our contributions can be summarized as follows.

1) Through quantitative and qualitative analysis on the VG
dataset, we identify fundamental challenges in the SGG
task: 1) ambiguity; 2) asymmetry; and 3) higher-order
contexts.

2) We design a novel framework, LOGINs, to address
the aforementioned issues, which achieved competitive
results against state-of-the-arts on the VG benchmark.

3) To quantify and concretely see how well the model
understands the relational direction, we introduce a new
BRC task. Here, LOGIN significantly outperformed state
of the art by a 6% of mean performance gain.

II. RELATED WORK

Numerous works have actively studied the task of recog-
nizing entities and their relationships in various forms. This
includes entity localization from natural language expres-
sions [15], human-entity interactions [16]-[18], or the more
general tasks of visual relationship detection [19]-[26], and
scene graph generation [27]-[40].

Among them, the scene graph generation has recently drawn
much attention. The challenging and open-ended nature of the
task lends itself to a variety of diverse methods. For example,
refining entity and predicate labels using iterative message
passing [27]; staging the generation process in three-step based
on the observation that entity labels are highly predictive
of predicate labels [28]; explicitly modeling interdependency
among entire entities using bi-linear pooling [29]; leveraging
the idea of proposal network [41] and graph convolution [42]
jointly [30]; combining both visual and linguistic features to
exploit linguistic analogies [32]; using statistical correlations
between entity pairs and their relationships to regularize
semantic space [33]; presenting a multiagent policy gradient
method to replace standard cross-entropy loss and maximize
a graph-level metric [35]; disentangle entity and predicate
recognition, enabling subquadratic performance [37].

We shed light on three underlying challenges that have not
been dealt with in-depth in previous studies: 1) ambiguity;
2) asymmetry; and 3) higher-order contexts (see Fig. 1).
Similar to ours, the ambiguity issue has been addressed in [36],
which is a proximal relationship ambiguity arising from mul-
tiple subject-object pairs being gathered nearby. On the other
hand, we interpret it differently as visual and semantic ambi-
guity caused by high intraclass variance and low interclass
variance. To the best of our knowledge, the asymmetry issue
in SGG is explicitly and importantly addressed for the first
time in this work. We believe that some works [20], [28],
[34], [36], [38], [43] can also cope with relational directions,
albeit they do not suggest an effective method. Higher-order
context problems have been addressed a lot in previous SGG
studies [27]-[30], but most focus on context utilization aspects.
We rather take a slightly different approach to find the answer
to the question, “Are we fully exploiting all the information
available?” To this end, we examine the predictability of
identity according to given graph components and then apply
the most promising way we find to the context propagation
step. In summary, we design LOGIN, an integrated framework
based on the analysis, to tackle the challenges simultaneously.

III. IDENTIFYING CHALLENGES IN SCENE
GRAPH GENERATION

This section seeks quantitative insights on the underlying
challenges of the SGG task by analyzing the VG dataset.
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In particular: 1) ambiguity (see Section III-A): how intra- and
interclass variance hinder clearly differentiating the predicate
class boundary; 2) asymmetry (see Section III-B): how has
relational direction been overlooked, and how can direction
awareness be quantified; and 3) higher-order contexts (see
Section III-C): what higher-order context should be considered
to predict the identity of each graph element. Motivated by
our findings, we design the LOGIN to better integrate local
and global contexts, which will be described in more detail in
Section IV.

A. Ambiguity

To gain insight into the VG scene graphs, we first exam-
ine the intraclass variance and interclass distance within
and in between predicate categories. Specifically, we take a
close look at label statistics (e.g., subject—object—predicate
co-occurrence). Intraclass variance within ith predicate can be
calculated as

| ¥
Varintra(i) = m Z(fzk - /ui)z- (1)
k=1

The interclass distance between ith and jth predicate is
normalized by the co-occurrence frequency

Ziﬂil ijzl Zfﬁl ’fik - fjk‘
NOSNNO ST

where N and M are the number of entities and predi-
cates, respectively. fi;x denotes the co-occurrence frequency
of ith predicate and kth entity pairing, and u; denotes the
mean value.

The results are depicted in Fig. 2. From the figure, it can be
observed that frequently occurring predicates tend to have high
intraclass variance, which implies the dominant predicates
can be used in various contexts repeatedly (i.e., even the
same predicate can pair with various entity pair candidates).
In contrast, most of the predicate—predicate pairs have similar
subject—object co-occurrence distribution. In this case, even if
subject-object identity is known, it becomes difficult to predict
the predicate (i.e., predicates in different categories can often
pair with the same entity pair).

In summary, even the same predicates may not be similar
visually (see Fig. 1) nor semantically. Accordingly, solving
these ambiguity issues could play a key role in generating
accurate scene graphs.

distiner (i, j) = )

B. Asymmetry
1) Bidirectional Relationships: Given two different entities

A and B, if the both A 5> B and B LA A relationships are
defined, we consider those relationships as BRs. Among them,
if o # S, we denote as asymmetric relationships, otherwise
as symmetric relationships. Examples of BRs are shown in
Fig. 3.

Among the total 108073 images in the VG Dataset [14],
11683 images contain 31 660 BRs, which can be broken down
into 29544 asymmetric relationships and 2116 symmetric
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Fig. 2. Intra- and interclass analysis on predicates. (Top) Predicate labels
are arranged in the order of proportion (green bar). More frequent predicates
tend to have higher intraclass variance (orange line). (Bottom) Each block
represents the degree to which predicate-predicate pair share the same entity
pairs in color—the more overlapping entity pairs, the brighter the block color.
Except for a few predicate pairs (e.g., on-flying in), most predicate pairs
have low interclass distance—the closer the brighter. Axis labels best viewed
zoomed in on screen.
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Fig. 3. Examples of BRs in VG dataset. (Left) Input images with ground-
truth bounding boxes (right) corresponding BR scene graph. Nodes and edges
are colored in blue and green, respectively. As can be seen in the figure, most
BRs are asymmetric.

relationships [see Fig. 1(b)]. Since the majority of relationships
are asymmetric (~93.3%), modeling the relational direction
(with regard to the entity orderings) is crucial (see Fig. 7).
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2) Modeling Relational Direction: One straightforward
approach to obtain a visual representation of a predicate is
to use a union appearance feature' directly, which is the form
used by many previous works [19], [24], [27], [30]-[35], [44].
Using only the union feature is straightforward and reflects
the holistic representation, but it entails a fatal problem. For
example, even the position of two entities is reversed, the union
feature remains the same thus cannot embody directionality
without the assistance of external features (e.g., spatial coor-
dinates, contexts). This weakness is more pronounced when
predicting relationships in opposite directions at the same time.

3) Diagnosis of Direction Awareness: It is common sense
that all relationships have directions and can always be defined
in both directions. However, since most of the relationships
that make up the VG dataset are uni-directional, a rigorous
analysis on the direction awareness of model is limited.
In other words, good performance can be achieved in the VG
dataset without due consideration of the direction awareness.

To this end, we introduce a new diagnostic task called
BRC to quantify and concretely see how well the model
understands the relational direction. The task is solely based on
the collected images containing BRs. Therefore, in all cases,
good performance can only be achieved by understanding the
direction.

What we want to observe in the BRC benchmark is how
much the model understands the direction of the relationship.
Among the three common criteria for evaluating performance
in SGG, SGGen includes not only predicate prediction but
also object localization and object class prediction, making
it difficult to evaluate direction prediction intensively. Like-
wise, since scene graph classification (SGCls) includes class
prediction of objects, it may be difficult to strictly verify
the directional understanding. Therefore, we adopt predicate
classification (PredCls) evaluation criterion that measures only
predicate predictions.

C. Higher-Order Contexts

To investigate the benefits of higher-order context, we mea-
sure how much information is gained given the identity of
different scene graph elements. Motivated by [28], we plot
the likelihood of guessing labels of target element given
labels of other graph elements in Fig. 4. In addition to node-
conditioned guessing performed on prior work [28], we further
analyze the predictability improvement given the edge identity.
To disentangle the significance of semantic knowledge from
image cues (e.g., appearance, spatial), no image features are
used and are guessed using only label statistics (i.e., subject-
object-predicate co-occurrence). A higher curve implies that
given graph elements are more decisive in guessing the target
element.

In the case of edge, it is greatly affected by the identity of
neighboring nodes, consistent with our intuition. What is more
noteworthy here is that even only one edge in the opposite
direction is known, nearly 90% accuracy can be achieved
within just five guesses. It can also provide complementary

'A union appearance feature is pooled from the Region of Interest (Rol)
feature that tightly encompasses two (subject and object) entities.
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Fig. 4. How much information does each graph component contain? The
figures show the likelihood of guessing the label of target element given
the identity of neighboring graph components—head, tail, and edge. Guesses
were made by looking up the empirical distribution over label statistics in the
training set (e.g., top-k frequent classes given graph elements). h2t refers to
the edge from the head node to the tail node, and t2h refers to the edge of
the opposite direction.

information in determining the identity of the target edge when
given with the neighboring nodes’ identity.

In the case of node, it has less correlation with adjacent
graph elements than edges. However, as shown in the figure,
a significant amount of information can be obtained whenever
the identity of adjacent graph elements is known one by one.
This fact motivates the use of as much information as possible
to correctly recognize the identity of each element.

To sum up, we see that both node and edge can most effec-
tively exploit inductive bias when utilizing all the identities of
adjacent graph elements.

IV. LOCAL-TO-GLOBAL INTERACTION NETWORK

Based on the analysis in Section III, we design a novel
framework LOGIN that aims to handle said issues in a bottom-
up manner. Each building block in LOGIN is specialized in
tackling specific challenges and also works complementary to
each other. An overview of LOGIN is shown in Fig. 5.

Problem Setup: Given an image I, the detector predicts a
set of entity proposals. For each entity proposal, it outputs
an Rol Aligned [2] visual appearance feature a; € R>0*7x7,
a bounding box prediction b; € R*, and initial classification
logit ¢; € R'!. In practice, a standard entity detector Faster
R-CNN [41] is used as a bounding box model.
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High-level overview of LOGIN. (a) Local interaction head (see Section IV-A): locally, interactions extract the essence between three instances—

subject, object, and background. (b) Direction sensitive encoding (DSE) (see Section IV-B): model become aware of relational direction by constraining the
input order. (c) Global interaction head (see Section IV-C): globally, interactions encode the contexts between every graph components—nodes and edges,
allowing the model to encode richer contextual information. (d) Attract and Repel Loss (see Section IV-D): embeddings of each predicate categories are
gathered into compact and well separated clusters by the loss. Combining all together, we build an end-to-end, unified framework that predicts a visually

grounded scene graph.

Starting from a set of entity proposals (equivalent to a set
of nodes in scene graphs), visual features are pooled from the
subject and object boxes that form a relationship and from a
union box to utilize contextual information (e.g., background)
via Rol-Align operation, then predict the node and edge labels
through scene graph generation head in turn.

The initial scene graph comprises a set of node represen-
tations A and a set of edge representations £. The ith initial
node representation x; € A is obtained by fusing three
important cues in the image: x; = ¢ ([a; || b; || ¢i]), where ¢ is
an embedding function and || denotes concatenation operation.
The edge representations £ are obtained through several stages
of process that will be described in the following.

The final scene graph is composed of a set of node label
distributions 9t € RV*! (including no-object class) and a set
of edge label distributions & € RM>*3! (including no-relation
class), where N and M is the number of total nodes and edges,
respectively.

A. Local Interaction Head

We posit the underlying vulnerability to ambiguity stems
from the inability to capture subtle yet discriminative rep-
resentations. Inspired by the recent successes of attention-
based fine-grained recognition works [45]-[51], where the
intraclass variance is usually high and vice versa for interclass,
we adopt the idea of attention mechanism. In particular,
as for local-interaction head (LIH), we formulate the instance-
level interaction as a non-local operation [48]. LIH learns to
highlight relationship-centric representations and suppress the
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Fig. 6. LIH learns what (3 x C) and where (H x W) to attend. It adaptively
learns to emphasize informative representation between three entity-level
instances by weighing how much each pair-wise interaction contributes to
relational representation.

noise since the non-local operation considers all individuals to
compute responses to the target individual.

The intensity of pair-wise interaction is calculated over
the three entity (node) features {x*, x°, x"} (each refers
to subject, object, and union, see Fig. 6). Given concate-
nated features X = [x*||x?||x"*], LIH outputs refined features
Z = [Z’]|z°||z"]. The interaction intensity between i and
Jjth individual is computed by the embedded Gaussian kernel
(€90), k0 and normalized by the sum

eQ(Xi)Tk(Xj)

>, et k()
J

a,'j =

3)

The interaction intensity «;; is multiplied with the represen-
tation of ith individual v(x;) followed by a transformation
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Fig. 7. Direction sensitive encoding. Between a pair of entities, the subject
and the object can be switched, and two opposite-direction relationships are
usually asymmetric. For example, the relationships of Man — Horse and
Horse — Man are generally different. For both-side relationships, we fed
all possible permutations of entity-level features (e.g., subject, object, and
union) that satisfy the conditions of “subject precedes object” into the same
MLP. Note that although both relationships follow the same condition, color
combinations (e.g., orange, green, and blue) vary with direction. The final
relationship is predicted after summing all the outputs of the MLP. During
training, the MLP learns to generate different outputs for the opposite-
direction relationships, thus it becomes aware of the relational direction.

function f(-). The output of LIH operation is given by
zij = f(a/v(x)) + xi. (4)

For the sake of better gradient flow while learning the LIH,
a residual-connection (+x;) is added. In practice, 1 x 1 x 1
convolutional operations is used for all embedding functions

B. Encoding Direction-Awareness

Before moving on to the next stage, there is an open
choice on how to fuse three instance features {z°,z°%, z"}
obtained earlier to initialize a graph-level predicate (edge)
representation. As suggested in [52], summing up all possible
permutations of instance features could be a generic method
for relational inference. The effectiveness of using permutation
has been empirically demonstrated in prior works [53]-[55],
but the directionality cannot be guaranteed since summing is
commutative. In other words, the permutation sets are identical
even if the ordering of two instances are reversed (i.e., the
identity of subject and object are switched). A simple sidestep
is to use the embeddings of concatenated instance features,
which is the form used in the several previous works [20],
[28], [34], [36], [43]. However, this also has the disadvantage
of losing the benefits of permutation.

We would like the LOGIN to be equivariant under the
subject—object ordering (i.e., relational direction) while being
invariant to the permutation. Let the interaction between two
entities as a set of permutations, S, and directional relation-
ship as any subset except the empty and the universal set,
ri C S, where r; # ¢ and r; # S, i € {f,b}. If the two
opposite-sided relationship (forward and backward) subsets
are disjoint, ry N r, = ¢, and their union is universal,
rp Ur, = S, the relationship encoding of two subsets can
always be semantically distinguished. Under these premises,
we specifically use a regulated set of permutations in which
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the subject always precedes the object—{SOU, SUO, USO}-to
represent a relationship in one direction. This simple strategy
guarantees that subject only appears in the first two bins,
and that object only appears in the last two bins. Thus, the
model can clearly distinguish between forward and backward
relationships while sharing entity instance features. Note that
this strategy is just a straightforward method to make half of
the entire permutation set represent the forward direction and
the other half represent the backward direction, and it does
not matter which combination of permutations is used.

Formally, the three instances from an input set {z°, z°, 7"}
are concatenated in a constrained order, providing inherent
bias of the directionality. They are then transformed via
shared multi-layer perceptron (MLP) (denoted as ¢ in the
below equation) and additively fused to make the predicate
representation invariant to the input permutations. ith predicate
representation e¢; € £ can be obtained as

> ek ©)

Jiklelzs 20,2}

e =
where z* precedes z° and j # k # [.

C. Global Interaction Head

From a graph perspective, the fully connected layer can
be seen as the most basic form of message passing net-
work with all nodes connected, but it is known to be not
effective in learning the graph. For effective context aggre-
gation, well structuring the message paths (i.e., connectivity
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Fig. 10. Distribution of categories in the BR dataset. (a) Frequency of entity categories and (b) predicate categories. For both entity and predicate, the top-ten
categories and the bottom-ten categories are highlighted based on frequency. Axis labels best viewed zoomed in on screen.

between nodes) is the key issue. Based on the observation
in Section III-C, we design a Global Interaction Head (GIH)
that enables effective message flow between informative graph
components. We formulate the graph-level interaction with
global message passing scheme [42], [56], [57].

To maintain a structured representation of a scene graph,
we utilize local connectivity information in the form of a
block matrix with four quadrants A € RNV+M*N+M) Each
quadrant from top left to bottom right indicates whether the
node-node (A,_, € RV*N) node-edge (A,—_, € RVM), edge-
node (A._, € RM*N) and edge-edge (A._, € RM*M) are
connected (1) or not (0)—the number of nodes and edges
are denoted as N and M, respectively. We consider that all
node pairs and node-edge pairs that make up a relationship are
interconnected. In the case of edge-edge, they are considered to
be connected when the opposite direction edge exists, although
there is no explicit connection on the graph (see Fig. 8)

An—n An—e
A= .
[ Aefn Aefe i| (6)

To preserve the original message, identity matrix (self-
connection) is added to A, resulting A = A + I. An initial
graph-level feature matrix G© € RV+MxD ig defined as

N
O —
g _[5] )

The Ith layer-wise propagation rule for GIH is defined as

max(O, AQ(I_I)W(I_I)), | = odd

o _ _
g G2 4 max(0, AGPWD), 1 = even.

()

We add residual connections between the layers for a
better optimization [58]. Multi-layer GIH can perform long-
range multi-hop communication, effectively modeling the
desired higher-order relational reasoning. While training,
weight matrix W e RP*? is learned by gradient.

Finally, the upper N rows (N’ € R¥*P) and the lower M
rows (£ € RM*P) of the output matrix are softmaxed and
used to predict entity and predicate labels.

D. Attract and Repel Loss

We introduce an Attract and Repel loss to explicitly handle
the intra- and interclass variance. The conceptual mechanism
of Attract and Repel loss is shown in Fig. 9. In a nutshell,
if the identities of the input and reference embeddings are

the same (i.e., category matches), the loss forces them to
attract each other; otherwise, the loss compels them to repel
each other. The reference embeddings can be divided into
two types: we refer to the running mean of the matched
reference embeddings as positive (pos), and negative (neg)
for that of non-matched. Note that the reference type is only
an abstract distinction and can be vary depending on the
identity of the input embedding. As the input embeddings
are learned to approach the positive and move farther away
from the negatives, the distribution within categories becomes
dense, and between categories becomes sparse. As a result,
the loss gathers the embeddings of each class into compact
and well-separated clusters. Since most BRs are asymmetric
(i.e., identities of predicates in opposite directions are mostly
different) as we have seen in Section III-B, the loss has the
potential benefit in predicting predicates in opposite directions
differently. Formally, at tth batch, given a set of predicate
embeddings £ = = {e, © e® ) a set of references RO =
{r(t) .. r51) }is adJusted w1th the following update rule:

’() ')
(;) r(t b * N( o 1)) + Zzepos i V- Z/Eneg jt
K N(r,(,f 1)) + N(pos) + N(neg)

©)

where N(-) denotes the number of embeddings considered in
reference update. Finally, the input predicate embeddings are
adjusted with the following Attract and Repel loss:

=2.2.|!

m iepos

r(r) e;(’)

+ INGINON

gljezne:g ’r"’t)’ ’ej(t)’
(10)

(t) e’(r)
(r)’ ’ ’(t)’

E. Loss Function

LOGIN can be trained in an end-to-end manner, allowing
the network to predict bounding boxes, entity categories, and
relationship categories at once. The total loss function for an
image is defined as

»Cimage = »Cent + »Cpred + L:ar (1 1)

where Len and Lpeq are both cross-entropy loss for entity
and predicate classification, respectively. L, stands for the
Attract and Repel loss. By default, hyperparameters of joint
loss function are set as 1:1:1.
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V. EXPERIMENTS

In this section, we conduct comprehensive studies to val-
idate the efficacy of LOGIN. We perform extensive abla-
tion experiments to thoroughly demonstrate the effectiveness
of each building block of LOGIN. LOGIN is evaluated
on VG [14] benchmark and achieves state-of-the-art results.
Notably, in our proposed BRC task, LOGIN successfully
distinguishes asymmetric relationships and is more accurate
than existing methods.

The model referred to as the BASELINE in this section is
a model without any proposed design principles. It directly
predicts the entity and predicate categories from the Rol-
aligned visual features of entity instances and that of union
of two entity instances, respectively.

A. Settings

1) Model Parameter and Training Details: For a fair
comparison, most of the settings and details follow pioneer
work [27], [28]. We adopt the Faster R-CNN [41] detector
with VGG backbone [5]. Following [28], we use per-class
non-maximum suppression (NMS) to reduce the number of
entity proposals. The number of entity proposals is 64 (i.e.,
N = 64). We optimize the model using stochastic gradient
descent (SGD) with the following details: initial learning rate
(1e-3), momentum (0.9), and weight decay (5e-4). We first pre-
train the detector on VG Dataset and then train the proposed
scene graph generation head while fixing the detector weight.
To model geometric relationships, we first concatenate two
extra channels with coordinates hard-coded (2 x 7 x 7) to
the initial visual representation and then pass them through
a convolutional layer [59]. As for the Attract and Repel loss,
we sample negatives by the number of positives to avoid being
heavily affected by negatives.

2) VG Dataset: We train and evaluate LOGIN on VG
Dataset [14]. We use the publicly released pre-processed data
(train and test split is 75 and 32 K) [27]. The number of entity
and predicate categories are 150 and 50, respectively.

3) BR Dataset: We build a BR dataset to evaluate the
direction awareness of the model. The BR dataset is a subset
of VG dataset and is created by filtering out relationships
with only one edge between the two nodes. As a result,
the BR dataset always includes the relationships that have

C 4. . riding
two bidirectional edges between the nodes (e.g., man ——
horse, horse Ldeg man). As shown in Fig. 1, about 93%
of bidirectional edges form different relationships depending
on the direction (i.e., direction-sensitive), and only about 7%
of bidirectional edges have the same relationship regardless
of direction (i.e., direction-agnostic). The distribution of BR
Dataset is shown in Fig. 10. Here, the five most frequent
entity categories and predicate categories are “man (5466),
window (1976), woman (1912), building (1640), shirt
(1632)”, and “on (8766), has (6669), of (3137), with
(2292), wearing (2238),” respectively. Note that the top-
five predicate categories account for about 73% of the total
predicates. This shows that the dominant predicate categories
are often used in various contexts repeatedly, implying that
variance may be high even within the same predicate category.
That is to say, this biasness supports our argument that dealing
with ambiguity issue is essential.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

4) Evaluation Setup: Model is evaluated with the following
three standard evaluation criteria [27].

1) PredCls: Given ground truth boxes and labels, predict

edge labels.

2) SGCls: Given ground truth boxes, predict box, and edge

labels.

3) Scene Graph Generation (SGGen): Predict boxes, box

labels, and edge labels.

As for SGG, following the prior works [27], [28], [30],
we use Recall@K (R@K) as an evaluation metric since mean
average precision (mAP)-like metrics are not appropriate due
to the sparse annotation in VG. Specifically, we use image-
wise Recall@{20, 50, 100}, which computes the fraction of
ground-truth triplets found in the top-K predicted triplets.
We also adopt the mean Recall@K (mR @K) metric [33], [34],
[38] for evaluation, which retrieves each individual predicate
and then averages R@K over all predicate categories.

As for BRC, conventional triplet recall-based metrics only
consider uni-direction, making it difficult to make a rigorous
evaluation of direction awareness. To this end, we have come
to introduce a new metric called pair-wise Recall (pR@K)
that fits the BRC task. The proposed metric is considered to
be “matched” only when BRs are both correct. Formally, the
pR@K calculates the fraction of the total amount of matched
BRs

[{top-K predicted BRs} N {total BRs}|
|{total BRs}| '

This constraint severely penalizes if the relationship predic-
tions in the opposite direction are the same. Therefore, models
without direction awareness cannot receive a high score on this
metric. For example, if only union features are used, there is
no chance that asymmetric relationships are correctly predicted
since only the same results are output for BRs. To get a high
score from this metric, the model needs direction awareness
that is essential to correctly predict asymmetric relationships
that account for most BRs in the BR datasets. Specifically,
we use pR@{2, 4,8, 16} in the BRC task since only a few
BRs are annotated per image (~3 BRs/image).

pR@K = (12)

B. Comparison With State-of-the-Art

1) Scene Graph Generation (SGG): The Recall perfor-
mance of the proposed method and existing methods are
compared in Table I for each evaluation criterion. We compare
LOGIN with the recent approaches [27], [28], [30], [33]-[36].
While LOGIN appears to show competitive results against the
state-of-the-arts in all criteria, note that there is no specific
method that achieves the best performances in every evaluation
criteria, making it difficult to judge the superiority among the
SGG methods.

We also benchmark LOGIN under the mean Recall
(mR @K) criteria. The results are shown in Table II. The mean
Recall is measured by averaging the Recall per each class
for the entire classes. Therefore, unlike conventional Recall
(R@K), it is irrelevant to the number of samples in each
class, and even if high performance is obtained in a class
with a large number of samples, it is difficult to achieve
good values if low performance is obtained in a class with
a small number of samples. That is, every class should obtain
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TABLE I
COMPARISON WITH THE STATE-OF-THE ARTS ON VG BENCHMARK. R@k DENOTES RECALL IN THE TOP-k PREDICTIONS

SGGen SGCls PredCls
Models R@20 R@50 R@100 R@20 R@50 R@I00 R@20 R@50 R@100
Imp [27] - 34 42 - 21.7 24.4 - 44.8 53.0
MOTIFNET [28] 214 27.2 30.3 329 35.8 36.5 58.5 65.2 67.1
GRAPH R-CNN [30] - 114 13.7 - 29.6 31.6 - 54.2 59.1
KERN [33] - 27.1 29.8 - 36.7 374 - 65.8 67.6
CMAT [35] 22.1 27.9 31.2 35.9 39.0 39.8 60.2 66.4 68.1
VCTREE [34] 22.0 27.9 31.3 352 38.1 38.8 60.1 66.4 68.1
RELDN [36] 21.1 28.3 32.7 36.1 36.8 36.8 66.9 68.4 68.4
LOGIN (OURS) 22.2 28.2 314 35.5 38.8 40.5 61.1 66.6 68.7
TABLE II

SGG RESULTS ON MEAN RECALL (MR@K). mR@k DENOTES AVERAGE R@K OVER ALL PREDICATE CATEGORIES

SGGen SGCls PredCls
Models mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100
IMmp [27] - 3.8 4.8 - 5.8 6.0 - 9.8 10.5
MOTIFNET [28] 42 5.7 6.6 6.3 7.7 8.2 10.8 14.0 15.3
KERN [33] - 6.4 7.3 - 94 10.0 - 17.7 19.2
VCTREE [34] 5.2 6.9 8.0 8.2 10.1 10.8 14.0 17.9 19.4
LOGIN (OURS) 5.9 7.7 9.1 8.6 11.2 12.4 16.0 19.2 22.3
TABLE III

COMPARISON WITH RECENT APPROACHES IN THE BRC TASK

PredCls

Models pR@2 pR@4 pR@8 pR@16
Imp [27] 6.3 9.1 12.2 15.0
MOTIENET [28] 7.7 11.5 15.9 19.5
GRAPH R-CNN [30] 7.9 11.7 16.3 21.0
KERN [33] 7.7 12.1 16.7 20.7
VCTREE [34] 8.0 11.9 16.1 21.0
RELDN [36] 8.0 12.5 16.4 20.8
LOGIN (OURS) 8.6 13.1 17.6 21.1

a good overall recall to achieve high performance. In short,
it is important to accurately predict the class with few data,
especially in tail, among long-tailed VG dataset. The long-
tailed distribution of VG dataset also implies that the dominant
predicates frequently appear in multiple contexts. Thus, it is
also related to the ambiguity issue. We see that LOGIN con-
sistently outperforms recent methods in mean Recall criteria
(see Table VII for Recall of individual predicate), implying
that our system effectively deals with ambiguity issue.

2) BR Classification: To independently evaluate the
direction-awareness of the model, we specifically use PredCls
criteria, which is orthogonal to the entity detection. We com-
pare LOGIN with recent approaches [27], [28], [30], [33],
[34], [36]. The results are summarized in Table III. Here,

although [27], [30], [33] use the initial predicate representation
as a union feature, they enable understanding of relational
direction by incorporating contexts with iterative bipartite mes-
sage passing, attentional graph convolution, and knowledge
embedded routing, respectively. By using direction sensitive
embedding and contextual information at the same time,
LOGIN can outperform the recent methods by a large margin
(6% of mean performance gain compared to the state-of-the-
art), implying that directional bias as well as contexts are
crucial in recognizing direction. LOGIN is in a competitive
position for VG dataset, which mainly contains uni-directional
relationships, but significantly improves performance, espe-
cially for BRs, which are common in the real world.

C. Quantitative Analysis

1) Model Ablations: We consider several ablations to
investigate the importance of the major design choices
in Table IV(a). For clarity, we show the performance in the
SGG task and the BRC task in a single table. Exp 1 is the
result of a vanilla version of LOGIN, i.e., BASELINE, which
shows the abysmal result, especially in the BRC setting. This
means that the BASELINE has no understanding of relational
direction at all; thus, it can only predict symmetric relation-
ships correctly. Exps 2—-5 examine the individual contributions
of each model component. Especially, LIH (Exp 2) and GIH
(Exp 4) have a significant impact on both SGG and BRC
settings. It is noteworthy that contextual information (driven
from GIH) also plays a key role in recognizing directions.
We can see in Exp 3 that DSE is relatively unremarkable in
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TABLE IV
(a) ABLATION STUDIES ON NETWORK DESIGN. (b) OPTIMAL VARIABLE SEARCH

(@)

(b)

Ablations SGCls PredCls SGCls
Exp LIH DSE GIH L, R@20 R@50 R@I00 pR@2 pR@4 pR@8 pR@I6 Variables R@20 R@50 R@100
1 30.8 34.7 36.2 0.2 0.4 0.7 1.3 24 AVGPOOL 34.3 38.4 40.2
2 v 335 375 39.6 8.0 11.5 17.0 20.3 2 | MAXPOOL 34.1 38.4 40.1
3 v 31.8 36.2 37.7 8.1 11.5 16.4 20.1 & FLATTEN 34.5 38.8 40.5
4 v 332 384 39.9 8.2 12.0 16.9 20.6
5 v 3.2 356 36.9 7.4 111 16.0 19.7 g | 2-LAYERS 341 38.4 39.9
6 v v v 344 38.5 40.3 8.4 12.9 17.5 21.0 5 4-LAYERS 345 38.8 40.5
7 v v v v 345 38.8 40.5 8.6 13.1 17.6 21.1 6-LAYERS 34.1 38.5 40.6
TABLE V —q
COMPARISON OF FEATURE FUSION METHODS. (a) SGCLS RESULTS ON I
VG DATASET. (b) BRC RESULTS ON BR DATASET
(a)
SGCls
Fusion R@20 R@50 R@100 (2) (b)
BASELINE 30.8 34.7 36.2 —
w/o Permutation 33.6 38.0 39.9 S.
Sequential 34.1 38.4 40.1 o
Parallel (Ours) 34.5 38.8 40.5
(b) . MLP
PredCls S II
o MLP
Fusion pR@2 pR@4 pR@§ pR@I16 II o
BASELINE 0.2 0.4 0.7 1.3
w/o Permutation 8.2 12.2 17.0 20.6 (c) ()
Sequential 8.3 12.7 17.3 20.9
Parallel (Ours) 8.6 13.1 17.6 21.1 Fig. 11.  Illustration of feature fusion methods to obtain initial predicate

SGG settings, while it improves performance in BRC settings
by a large margin. Although the unary effect of Attract and
Repel Loss L, (Exp 4) is not significant, using the loss with
other components (Exp 7) can further push the performance
than without it (Exp 6). When all model components are
combined (Exp 7), the model achieves the best performance in
both SGG and BRC tasks, which implies that each component
contains an orthogonal factor that complementarily boosts the
performance.

2) Optimal Variables: We conduct experiments to decide
optimal variables of LOGIN in Table IV The optimal fea-
ture extraction method is first investigated. Here, flattening
the feature maintains richer information than pooling, thus
shows the best results among the three choices: AVGPOOL,
MAXPOOL, FLATTEN. Then we examine the optimal number
of layers in GIH: four-layers produce the best results. Stacking
multiple layers enables multi-hop communication, though it
also increases the chance of introducing noisy information.
On the other hand, stacking few layers cannot fully capture
the higher-order contexts.

3) Design Choices of DSE: In this experiment, we fur-
ther explore the four design choices of Direction-Sensitive
Encoding. Specifically, we investigate two approaches that
have been adopted in most existing SGG literature: 1) using
only a union feature [19], [24], [27], [30]-[33], [35], [44]

representation. (a) BASELINE: use union feature only. (b) W/o Permutation:
concatenate all and fuse them without permutation. (c) Sequential: fuse subject
and object first, and then with union. (d) Parallel: fuse all the permutations at
once where the subject precedes object. Here, S, O, U, respectively, denotes
subject, object, and union.

(BASELINE); 2) fusing subject, object, and union without-
permutations [20], [28], [34], [36], [38], [43]—and two vari-
ants of subject, object, and union fusion under the subject-
precedes-object constraint; 3) sequential fusion; and 4) parallel
fusions (see Fig. 11). Except for the 1) among the four
cases, the ordering of the subject and the object is fixed
and therefore meets the directionality condition. Additionally,
3) and 4) consider the sum of all possible permutations. The
difference between 3) and 4) is the order of fusion. We conduct
experiments in two settings for performance comparison on
fusion methods. The results are summarized in Table V. Here,
the performance difference between the four fusion methods
in the SGC setting [see Table V(a)] is not prominent, while the
significance of combining three features is particularly evident
in the BRC setting [see Table V(b)], suggesting that union
feature alone cannot give relational direction. In both settings,
the use of permutations at the fusion phase showed better
results than otherwise, and especially when fused in parallel,
it showed the best results.

4) Effectiveness of GIH: We examine the effectiveness of
GIH by comparing GIH with two representative message
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Fig. 12. Qualitative examples. The first column shows input images with entity proposals. From the second to fourth columns, we show the scene graphs
of ground-truth, BASELINE, and LOGIN, respectively. The bounding boxes or nodes are colored in either blue (correct) or red (wrong). The predicates are
colored in either green (correct) or yellow (wrong). Examples of the first two rows contain BRs, but not the rest. We see that LOGIN produces more diverse
predicates and can successfully distinguish asymmetric relationships while BASELINE model fails.
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TABLE VI

EFFECTIVENESS OF GRAPH INTERACTION HEAD (GIH) COMPARED
TO OTHER GRAPH NEURAL NETWORKS (E.G., GCN [42] AND
GAT [56]). (a) SGCLS. (b) BRC

(a)

SGCls
Methods R@20 R@50 R@100
LOGIN /w GCN [42] 33.8 375 39.7
LOGIN /W GAT [56] 332 37.1 39.5
LOGIN /w GIH (Ours) 34.5 38.8 40.5
(b)
PredCls
Fusion pR@2 pR@4 pR@8 pR@16
LOGIN /w GCN [42] 7.8 12.4 16.5 20.5
LOGIN /w GAT [56] 7.9 12.3 16.3 20.3
LOGIN /w GIH (Ours) 8.6 13.1 17.6 21.1
TABLE VII

PER-TYPE PREDICATE CLASSIFICATION RESULTS. ONLY TOP-20
FREQUENT PREDICATES ARE SHOWN. THE
EVALUATION METRIC IS R@50

predicate  Baseline = LOGIN \ prediate Baseline  LOGIN
on 66.3 88.1 sitting on 32.2 61.0
has 47.7 87.5 under 359 52.5
wearing 68.9 93.7 riding 26.3 83.0
of 42.8 82.4 in front of 8.9 294
in 47.1 64.1 standing on 16.7 37.7
near 19.4 523 at 39.5 57.8
with 18.1 459 attached to 12.1 21.0
behind 20.7 57.0 carrying 23.9 62.1
holding 314 78.7 walking on 10.5 59.3
above 18.2 51.2 over 9.5 28.4

passing graph neural networks in Table VI: Graph Convo-
Iutional Network (GCN) [42] and Graph Attention Network
(GAT) [56]. GCN aggregates feature information via a non-
euclidean convolution operation from a node’s neighborhood.
As opposed to GCNs, GAT allows for implicitly assigning
different importances to nodes of the same neighborhood,
enabling a leap in model capacity. Unlike them, layer-wise
propagation rule of GIH considers not only nodes but also
edges as a neighborhood, allowing the model to leverage
higher-order contexts for node update. From the results,
we see that GAT does not improve the performance upon
the GCN. The results demonstrate the effectiveness of GIH
in predicting both object and relationships categories (SGCls).
Since LOGIN equipped with GIH exploits richer information
(e.g., edge), it is also strong in understanding relational direc-
tion (BRCO).

5) Per-Type Predicate Recall: We expect the model to better
understand each predicate by allowing attention mechanism
of LIH to capture the predicate label-specific representation
well and Attract and Repel loss to help separate interclass
and aggregate intraclass predicates in the embedding space.
In order to ensure that the proposed model solves the ambi-
guity issue well, we compare our LOGIN with Baseline
under the Recall@50 metric for the top-20 frequent predicates
in Table VII. Compared to Baseline, we observe a significant
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performance improvement in all predicate classes. Specifically,
our system better understands the geometric predicate (e.g., on,
in front of, behind, above, under), possessive predicates
(e.g., has, of, wearing), and semantic predicates (e.g., holding,
walking). This suggests that explicit separation on predicate
embedding space properly solves the ambiguity problem.

D. Qualitative Analysis

To better see how LOGIN understands the relational direc-
tion, we provide qualitative examples in Fig. 12. Here,
we compare the result of BASELINE model and LOGIN with
the corresponding ground-truth scene graph. As we can see
in the results of first two rows, BASELINE model produces
the same result for a pair of entities regardless of direction.
What is worse is that the whole scene graphs use almost
the same predicates for defining relationships. In other words,
the BASELINE model neither considers relational-direction nor
lexical diversity. On the other hand, LOGIN can successfully
identify relational direction, thanks to the embedded direction-
awareness, and it is also more diverse in terms of vocabu-
lary. More interestingly, even though predictions of LOGIN
are not matched, the results are seemingly plausible. For
example, in the third row, detected tail, legs, and face
of an elephant are false positives in terms of ground-
truth, but they seem to be correct in reality. Also, relation-
ships associated with false positives are somewhat reasonable

£
(e.g., elephant has leg, leg AN elephant).

VI. CONCLUSION

This article discusses three fundamental challenges in SGG
task: 1) ambiguity; 2) asymmetry; and 3) higher-order con-
texts. Motivated by the analysis and to tackle the issues
effectively, we present a new unified framework, LOGIN.
Our framework enables predicting the scene graph in a local-
to-global and bottom-to-up manner, leveraging the possible
complementariness effectively. We achieved state-of-the-art on
VG benchmark. Last but not least, we present a new diagnostic
task called BRC and observe that our method outperforms
competing methods significantly.
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