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Molecular data representation 
based on gene embeddings 
for cancer drug response prediction
Sejin Park 1 & Hyunju Lee 1,2*

Cancer drug response prediction is a crucial task in precision medicine, but existing models have 
limitations in effectively representing molecular profiles of cancer cells. Specifically, when these 
models represent molecular omics data such as gene expression, they employ a one-hot encoding-
based approach, where a fixed gene set is selected for all samples and omics data values are assigned 
to specific positions in a vector. However, this approach restricts the utilization of embedding-vector-
based methods, such as attention-based models, and limits the flexibility of gene selection. To address 
these issues, our study proposes gene embedding-based fully connected neural networks (GEN) that 
utilizes gene embedding vectors as input data for cancer drug response prediction. The GEN allows for 
the use of embedding-vector-based architectures and different gene sets for each sample, providing 
enhanced flexibility. To validate the efficacy of GEN, we conducted experiments on three cancer drug 
response datasets. Our results demonstrate that GEN outperforms other recently developed methods 
in cancer drug prediction tasks and offers improved gene representation capabilities. All source codes 
are available at https:// github. com/ DMCB- GIST/ GEN/.

The utilization of molecular profiles of cancer cells in patients is crucial for recommending cancer drugs in 
precision medicine. Several computational methods have been developed for predicting drug responses for 
cancer cell lines and patients with  cancer1–6, utilizing different approaches for representing drugs and molecular 
profiles of cancer cells. For cancer cell representation, some methods such as  DeepCDR1 and  SWnet2 represented 
molecular profiles as sequences, which are then inputted into neural networks. Others, like TGSA (TGDRP)3 
and  GraphCDR4, use a graph neural network (GNN)7 to encode cell line information. For drug representa-
tion,  DeepCDR1 and  TGSA3 used a uniform graph convolutional network (UGCN) and a graph isomorphism 
network (GIN), respectively, which has shown superior performances compared to hand-crafted features and 
SMILES-based  features8. In addition, Wang et al.5,  SWnet2, and  MOFGCN6 utilized the similarity matrices of 
cell lines and drugs.

In the cancer drug response prediction task, the representation of molecular omics data in cancer cell is 
important for improving prediction performance. The conventional approach of allocating a fixed vector index 
for each gene and assigning gene information (e.g., gene expression values) to its corresponding index is similar to 
one-hot encoding and has been widely used. This approach is also similar to the bag-of-words models in natural 
language processing (NLP). However, this approach has several limitations. First, it lacks additional representa-
tive information beyond omics data, which may limit its ability to capture the complexity of molecular profiles. 
Second, the fixed vector representation restricts the flexibility of input genes and data format. Thus, it cannot 
use most important input gene sets for each sample.

In NLP,  word2vec9 has increased the power of word representation and the flexibility of using actual words. 
 Node2vec10 also converts nodes into embedding vectors, demonstrating that it is better to learn continuous 
feature vectors rather than constant feature vectors. Similarly, in bioinformatics, gene embedding has been used 
to represent  genes11–16. Most of these methods have been developed for entity relationship prediction; e.g., pro-
tein–protein, protein–drug, drug–disease, and drug-side-effect  interactions14–16. Because these entity relationship 
prediction tasks do not predict sample-specific information (e.g., drug response and survival time prediction), 
sample-specific datasets such as gene expression data were not used yet. In Choy et al.13, gene expression datasets 
were used to learn gene and sample embedding vectors. However, the gene vectors were used to show gene-
relatedness in the context of cancer, but not for sample-specific prediction tasks (e.g., drug response prediction).
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In this study, we propose a new model, called gene embedding-based fully connected neural networks (GEN), 
for predicting cancer drug responses. In GEN, genes are projected into a continuous vector space, allowing for 
more informative gene representations as embedding vectors, which can be leveraged using various techniques 
such as attention  mechanisms17. Moreover, individual input gene sets can be dynamically selected for each sam-
ple, enabling the utilization of the most relevant genes for each cancer cell. Our experimental results demonstrate 
that GEN outperforms recently developed methods on three different datasets in cancer drug response prediction 
tasks. Additionally, through an ablation study, we analyze the enhanced representative power of gene embedding 
vectors, demonstrating that a gene embedding-based encoder generates powerful sample representation vectors. 
These findings underscore the potential of gene embedding-based approaches and contribute to the advancement 
of cancer drug response prediction methods.

Materials and methods
Datasets
We used three datasets including the Genomics of Drug Sensitivity in Cancer (GDSC)18, the Cancer Cell Line 
Encyclopedia (CCLE)19, and the Cancer Therapeutics Response Portal (CTRP) which provided gene expression 
values of cell line samples, cancer drugs, and IC50 or area under the dose-response curve (AUC) values for 
cancer drug responses. Specifically, the GDSC and CCLE datasets have the IC50 values for drug responses and 
are the same ones used in Super.FELT20 and  SWnet2, respectively, and gene expression values of cancer cell lines 
and their cancer drug responses (AUC) of CTRP dataset are downloaded from  CellMiner21 (https:// disco ver. 
nci. nih. gov/ rscon nect/ cellm inerc db/). The processing of molecular features for cancer drugs was carried out in 
a manner identical to TGSA (TGDRP)3. The GDSC contains 962 cell lines, 221 drugs, and a total of 185,426 cell 
line-drug response pairs. The CCLE has a smaller number of cell lines (469) and drugs (24), resulting in only 
10,853 pairs. On the other hand, the CTRP comprised a larger number of cell lines (823) and drugs (481), with 
the highest number of pairs (314,463). In addition, for the GDSC dataset, Iorio et al.22 provides the threshold 
values to decide the responses or non-responses between cell lines and drugs. Therefore, the binary test was 
conducted on the GDSC.

Improvement of the representative power of genes
In conventional methods that use gene expression data, the same gene set is used for representing molecular 
profiles of all samples, and input vectors are based on one-hot encoding. For example, if we select genes 1, 2, 
and 3 as the input genes, each gene is represented as g1 = [1, 0, 0] , g2 = [0, 1, 0] , and g3 = [0, 0, 1] , respectively. 
When the gene expression values of the input genes of sample i are ki1, k

i
2 , and ki3 , the representation of sample 

i is si = ki1 × g1 + ki2 × g2 + ki3 × g3 = [ki1, ki2, ki3] . This is similar to the bag-of-words approach because both 
methods rely on one-hot encoding, which restricts the number of input words and genes.

Several studies have suggested that cell lines sharing similar genetic profiles may exhibit similar responses 
to  drugs5,23. However, our analysis revealed that the correlation between cell line similarity and drug response 
similarity is relatively low, with values of 0.308, 0.063, and 0.101 for GDSC, CCLE, and CTRP, respectively 
(Fig. S1a,d,g in the Supplementary Materials). Moreover, most pairs of cell lines exhibit gene expression correla-
tion values larger than 0.75 in GDSC and CTRP and larger than 0.2 in CCLE (Fig. S1a–i), and there is no signifi-
cant difference in gene expression correlation among different ranges of drug response correlation (Fig. S1c,f,i). 
These results suggest that samples with a high correlation in gene expression do not always share similar drug 
responses among the samples. However, the utilization of the same input gene set in the conventional one-hot 
encoding approach highly incorporates gene expression correlation among samples, and the correlation would 
negatively impact on the performance. Although a complex non-linear model has the potential to overcome this 
issue even when using the same gene sets for all samples, it is crucial to minimize the reliance on gene expression 
correlation during the gene encoding stage.

Considering this relationship between gene expression and drug response correlations, it is critical in cancer 
drug response prediction to encode input cell lines in a manner that is more distinguishable and less affected by 
gene expression correlations between samples. Instead of using the same gene set, we first employ individually 
important (under- or over-expressed) genes for each sample, which are distinct depending on the samples and 
are referred to as individual gene sets. This individual gene set might reduce the gene expression correlation 
between samples and improve sample encoding vector distinguishability. Second, we aim to encode these embed-
ding vectors more distinguishable using advanced encoders such as an attention mechanism-based encoder.

We use gene embedding vectors to represent genes in individual gene sets because gene embedding vectors 
are not restricted by the position and dimension (number of input genes)  like the conventional one-hot encoding 
approach, i.e., gene embedding vectors allow us to use flexible input genes for each sample. The next subsection, 
“Gene embedding vectors”, describes the specifics of gene embedding vectors. For encoders, we can use a simple 
non-linear fully connected (FC) encoder, which allows gene embedding vectors to have greater representative 
power than one-hot encoding. However, the output vector of the simple FC encoder remains a variation of the 
input vector. This limitation can significantly reduce the representative power of the embedding vectors, as the 
gene embedding vectors are already trainable. To address this limitation, we have designed advanced encoders 
that transpose the input vectors in the hidden layer or use the attention mechanism. By utilizing these tech-
niques, the output vectors are calculated using elements of other embedding vectors, so the embedding vectors 
that interact with different vectors are no longer variants of the gene vector. Herein, the encoder transposing 
input matrix and using the attention mechanism are denoted as the mixed FC (mFC) and attention (Att) encod-
ers, respectively. Note that definitions and details of FC, mFC, and Att encoders are described in Eqs. (2), (3), 
and( 5) respectively, in the subsection “Encoders”. Finally, in the subsection “GEN: gene embedding-based fully 

https://discover.nci.nih.gov/rsconnect/cellminercdb/
https://discover.nci.nih.gov/rsconnect/cellminercdb/
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connected neural networks”, we describe how our method implements gene embedding vectors and advanced 
encoders to improve the representative power of genes.

Gene embedding vectors
Intuitively, genes can be regarded as words, therefore, they can be represented using gene embedding vectors 
like word vectors in NLP. In contrast to word vectors, in this case, gene expression value must be reflected within 
an embedding vector, and the values are handled as a scale of the gene vector. Let (G ,V ) be the set of gene 
embedding vectors and the gene expression values of all samples, g ∈ R

d is a trainable gene embedding vector, 
|g| = 1 , and G = {g1, g2, ..., g|G |} . Given gene a of i sample, we scale ga with its gene expression values via , that 
is, viaga . Using the scaled gene vector, we can represent the genes of each sample with these gene expression 
values.

The gene vocabulary in our experiment comprises 18,618 genes and four special tokens (PAD, SEP, Unknown, 
and Mask for general use, as in NLP models. The dimension of the gene embedding vector is d, resulting in a 
trainable matrix of (18,618 + 4) × d dimensions, G ∈ R

18,622×d.

Encoders
We designed three encoders for cell line features, the FC, mFC, and Att encoders, which are based on FC layers. 
Let X ∈ R

n×d be an input matrix, where n and d are the number of genes and the dimension of the input vector, 
respectively. The FC layer for a projection from the d to the k dimension is as follows:

where W ∈ R
d×k and b ∈ R

k respectively are the trainable matrix and biases.
The FC encoder consists of two fully connected layers with an activation function, such as  GELU24. The FC 

encoder, EnCFC , is defined as:

where LayerNorm is a layer  normalization25, k is an output dimension, and σ is an activation function.
gMLP26 made the vision  transformer27 achieve the same accuracy without self-attention. One of the key ideas 

was the projection over the cross-token dimension rather than the channel dimension. In this projection, input 
token representations can directly interact with each other by transposing the projected matrix in the hidden 
layer. Inspired by this approach, we designed the mFC encoder, where a matrix in the hidden layer is transposed 
to interact with other gene vectors. The mFC encoder, EnCmFC , is defined as follows:

where n is the number of genes.
The Att encoder has a self-attention  layer28 and a skip-connection. The Att encoder, EnCAtt , is defined as:

where WQ ∈ R
d×k , WK ∈ R

d×k , and WV ∈ R
d×k are trainable matrices for the projection from the d to the k 

dimensions.

GEN: gene embedding-based fully connected neural networks
Let {S1, S2, ..., SK } ⊆ S and {M1,M2, ...,MT } ⊆ M respectively be a set of cell line samples and molecules, where 
Si = (Gi ,Vi),Gi ⊆ G , and Vi ⊆ V . Cell line representations are made with the gene embedding vectors, and the 
molecular representations are made with  GIN29, which is the same as the molecular encoder of TCGA (TGDRP)3. 
We can define the cell line and molecular representations as:

where gkn ∈ Gi and vikn ∈ Vi are the embedding vector of gene kn and the gene expression value of the i sample, 
respectively, Xi ∈ R

|Gi |×d , g ∈ R
d , v ∈ R , and mj ∈ R

dm.
Finally, the encoded cell line and molecular representations are concatenated and input into nonlinear FC 

networks to predict drug responses.

(1)FCd,k(X) = XW + b,

(2)EnCFC(X) = LayerNorm(FCk,k(σ (FCd,k(X)))),

(3)EnCmFC(X) = LayerNorm(FCn,n(σ (FCd,k(X))
T)T),

(4)Q = XWQ ,K = XWK ,V = XWV

(5)EnCAtt(X) = LayerNorm(Softmax(
QKT

√
k
)V)+ V,

(6)Xi =

[

v
i
k1
gk1 , v

i
k2
gk2 , . . . , v

i
|Gi |gk|Gi |

]T

(7)mj = GIN(Mj),

(8)z =Max(EnC(Xi))⊕ FC(σ (FC(mj)))

(9)ŷ =FC(σ (FC(σ (FC(LayerNorm(z)))))),
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where z ∈ R
dz , Max is a max pooling for a channel axis, EnC is an FC, mFC, or Att, ⊕ is a concatenation opera-

tion, and ŷ is a predicted value. Herein, we denote the GEN using FC, mFC, and att encoders as GEN-FC, -mFC, 
and -Att, respectively.

Figure 1 illustrates the workflows of GEN and a conventional approach to highlight the distinctive approach of 
GEN. First, GEN can use individual input gene sets for each sample by using gene embedding vectors. For exam-
ple, the individually important (under- or over-expressed) genes of samples 1, 2, and 3 are {g2, g4, g5} , {g2, g3, g4} , 
and {g1, g2, g5} , respectively. We can represent the samples by: S1 =

[

v
1
2g2, v

1
4g4, v

1
5g5

]

 , S2 =
[

v
2
2g2, v

2
3g3, v

2
4g4

]

 , 
and S3 =

[

v
3
1g1, v

3
2g2, v

3
5g5

]

 , where gn and vin denote the gene embedding vector for gene n and its gene expres-
sion value of sample i. In contrast, conventional methods use databases (e.g.,  COSMIC30) or genes with high 
variability to select commonly important genes for all samples in a given task, where genes are represented by 
indices of the input vector. Second, our approach allows for the use of various deep learning models, such as 
attention-based models, which require a matrix as the input data type. In contrast, conventional approaches 
using a vector of gene indices as input data cannot be used with matrix-based models, limiting the type of deep 
learning models that can be employed. As a result, vector-based models (e.g., autoencoders) have been com-
monly used in conventional approaches.

Results
Experimental design
We compared the GENs (-FC, mFC, and Att) with recent cancer drug prediction models:  DeepCDR1,  SWnet2, 
 GraphCDR4, and  TGDRP3. DeepCDR uses 1D CNNs and nonlinear fully connected networks to encode the 
sequence representation of omics data in a cell line, and UGCN to represent the molecular features. SWnet 
also uses the sequence representation for cell line information, but 1D CNNs as a genetic encoder and  GNN31 
as a molecular encoder. In addition, SWnet utilizes the chemical similarity of particular cancer drugs and self-
attention based on molecular features. To focus on the attention weights of essential genes, the attention weights 
were multiplied with genetic mutations, and then these became the final attention weights. GraphCDR and 
TGDRP used the graph format to represent cell line information, although graphs were constructed differently. 
In a graph of GraphCDR, each cell line is represented as a node, and the node is encoded with its corresponding 
omics values. For cancer drugs, these nodes are generated by  GCN32, and edges between cell line and cancer 
drug nodes are determined by the binary drug responses (response or no-response). In other words, cell lines 
and cancer drugs are represented as nodes in one graph. In contrast to GraphCDR, the TGDRP employs two 
different graphs (i.e., cell line and cancer drug graphs) to encode cell lines and cancer drugs separately. To be 
specific, the cell line graph in TGDRP used genes as nodes, with their corresponding omics values as features, 
and edges are formed interactions between genes in the STRING  database34. The cancer drug graph of TGDRP 
is encoded by GIN. Table 1 is the description of all methods.

We evaluated the regression test on the GDSC, CCLE, and CTRP and the binary test on the GDSC. We could 
not test GraphCDR on the regression task because edges in GraphCDR represent drug binary response values 
for a cell line. To examine the power of gene embedding vectors fairly, we configured the following experimental 
settings: (1) Only gene expression data was used for benchmark models. However, for SWnet and GraphCDR, 
genetic mutation data were also used because the SWnet algorithm requires it and GraphCDR was not trained 

Figure 1.  (a) and (b) show the GEN workflows and a conventional method for predicting cancer drug 
responses, respectively. The workflows are divided into three main stages: the setup stage, the sample 
representation stage, and the prediction stage, where S and g denote samples and genes, respectively. In the final 
prediction stage, a drug embedding vector is concatenated with the sample embedding vector, and ŷ represents 
the predicted drug response value for the given sample.
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with only gene expression data. (2) We did not use additional training; thus, we compared TGDRP but not TGSA, 
which is the variant of TGDRP additionally trained using similarity augmentation after training TGDRP. (3) 
We additionally tested DeepCDR using a GIN (DeepCDR-GIN) instead of the UGCN. Because the GIN is the 
foremost model in the chemistry  domain35, the DeepCDR-GIN helps to compare DeepCDR and the GEN using 
the same drug representation format.

Furthermore, we conducted experiments to evaluate the effectiveness of our proposed method for three cases. 
Firstly, we examined the performance of GEN without gene embedding vectors (GEN-w/o-GV) to determine 
whether the use of gene embedding is superior to conventional methods for representing samples. Secondly, 
we assessed the effectiveness of utilizing individual and the same gene sets (GEN-I and S, respectively). Lastly, 
we investigated the impact of transposing in the hidden layer or the attention mechanism on the representative 
power of embedding vectors by using GEN-FC, mFC, and Att.

The selection of features (genes) influences the performance of models in conventional approaches using 
omics data, and we attempted to use genes employed in each benchmark method experiment. Specifically, 
SWnet, TGDRP, and GraphCDR used 1478, 706, and 697 cancer-related genes from the COSMIC  database30 for 
the experiments, respectively. However, the datasets used in our study do not contain all the genes used in the 
TGDRP and GraphCDR. Therefore, we used genes that are in both our and their datasets (Table 2). In the SWnet 
experiment on the CTRP, we selected 1478 genes with the highest variances because there are only 573 common 
genes between SWnet and the CTRP. For DeepCDR, GEN-w/o-GV, and GENs-S, 300 genes with the highest 
variances were selected, where genes are same across all samples. Even though 697 genes from the COSMIC 
database were used in the DeepCDR study, we used the same 300 most highly variant genes as GEN-w/o-GV 
and GEN-S to directly examine the impact of gene embedding vectors. In contrast to these benchmark methods, 
the GEN can flexibly select the input gene set. For GENs-I, we used sets of 300 individually significant (over- or 
under-expressed) genes that have the highest absolute distance from their average gene expression values, where 
genes differ between samples.

We designed two experiments on the cancer drug response prediction task: (1) a new pair test and (2) a new 
cell line test. During the test stage, the new pair test predicts pairs of drugs and cell lines that were unseen in the 
training and validation stages. Training, validation, and test samples are divided by distinct cell lines in the new 
cell line test, where any test cell lines are unseen in the training and validation stages, i.e., the test pairs consist 
of the seen drugs and unseen cell lines. Therefore, we evaluated the performance of our methods in new cancer 
samples using the new cell line test.

In the new pair test, we conducted five-fold cross-validations on the CTRP and GDSC-regression and -binary 
datasets, and 5 × 5-fold cross-validations on the CCLE dataset because of the small number of samples. In the 
new cell line test, we performed five-fold cross-validations on GDSC-regression and binary tasks. For a fair com-
parison, we established ten hyperparameter sets for GEN and other benchmark methods. The hyperparameter 

Table 1.  Description of comparing methods and GEN. # parameters represents the number of parameters. 
FCN means nonlinear fully connected networks. a  is the number of parameters when the gene embedding 
dimension is 64.

Feature encoders

Methods Representation of gene expressions Drug Gene expression # parameters

DeepCDR Sequence UGCN1 FCN &1D CNNs 346,634

DeepCDR-GIN Sequence GIN29 FCN &1D CNNs 644,086

SWnet Sequence GNN31 1D CNNs 507,662

GraphCDR Sequence GCN32 FCN 1,336,153

TGDRP Graph GIN GAT 33 4,061,521

GEN-w/o-GV Sequence GIN FCN 1,759,873

GEN-FC Gene vector GIN EnCFC 2,831,873a

GEN-mFC Gene vector GIN EnCmFC 2,659,517a

GEN-Att Gene vector GIN EnCAtt 2,635,777a

Table 2.  The number of input genes in each method. # genes: the number of genes. Highest var: selecting 
genes with the highest variances. COSMIC: selecting genes in  COSMIC30. Individual: selecting individual gene 
sets.

Methods

GDSC CCLE CTRP

# genes Criterion # genes Criterion # genes Criterion

DeepCDR 300 Highest var 300 Highest var 300 Highest var

SWnet 1478 COSMIC 1478 COSMIC 1478 Highest var

GraphCDR 661 COSMIC – – – –

TGDRP 694 COSMIC 657 COSMIC 680 COSMIC

GEN 300 Individual 300 Individual 300 Individual
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sets for GEN were empirically determined, and the hyperparameter sets for the other methods include those 
provided by their codes and additional nine sets that were combinations of the original ones (Table S1 in the 
Supplementary Materials). The final test results were obtained by using the best hyperparameters in the valida-
tion of each fold (Tables S2 and S3 in the Supplementary Materials).

Comparative performances
Tables 3 and 4 show the performance of GENs and other benchmark models on the GDSC, CCLE, and CTRP 
datasets in the new pair test, and Fig. S2 show the scatter plots between true and predicted response values in 
GDSC for all drugs and three example drugs (belinostat, fedratinib, and dasatinib). GEN-Att-I outperformed 
the other methods on CTRP and GDSC-regression, while GEN-Att-S and GEN-mFC-S did on GDSC-binary 
and CCLE, respectively. GENs achieved the best performance in all datasets, even though the best GEN among 
GEN variants varied by datasets. The performances of other benchmark models also depend on the dataset. 
Compared to other benchmark methods, TGDRP and GraphCDR demonstrated better performances in the 
regression task and the binary task on GDSC, respectively. For small datasets such as CCLE, DeepCDR-GIN 
was the second best due to its smaller number of parameters, even though it showed inferior performance in the 
regression task on GDSC and CTRP. Additionally, to verify the influence of input gene sets, we tested TGDRP, 
the best method among benchmark methods, using 300 genes with the highest variances, which are the same 

Table 3.  New pair test results on the regression and binary tasks on GDSC. MSE: mean squared error; R 2 : 
coefficient of determination; R: Pearson correlation coefficient; F1: F1 score; AUC: area under the curve 
receiver operating characteristic; AUPR: area under the precision-recall curve; ACC: accuracy. The postfixes -I 
and -S mean the use of individual gene sets and the same gene set, respectively. The best performance of each 
dataset is in bold. a Represents the use of both gene expression and mutation data.

Method

GDSC on regression task GDSC on binary task

MSE R2 R F1 AUC AUPR ACC 

DeepCDR 1.4101 ± 0.051 0.8094 ± 0.006 0.8998 ± 0.003 0.4584 ± 0.006 0.8166  ± 0.003 0.4469 ± 0.012 0.8511 ± 0.003

DeepCDR-GIN 1.0429 ± 0.011 0.8588 ± 0.002 0.9268 ± 0.001 0.5019  ± 0.006 0.8455  ± 0.005 0.5113 ± 0.009 0.8753 ± 0.002

SWneta 1.0301 ± 0.013 0.8583 ± 0.002 0.9268 ± 0.001 0.4729  ± 0.012 0.8336  ± 0.006 0.4890 ± 0.018 0.8675 ± 0.008

GraphCDR* – – – 0.5091 ± 0.010 0.8433 ± 0.006 0.5283 ± 0.013 0.8638 ± 0.011

TGDRP 0.9107 ± 0.003 0.8744 ± 0.001 0.9353 ± 0.001 0.5042 ± 0.010 0.8485 ± 0.006 0.5327 ± 0.013 0.8833 ± 0.003

TGDRP-HV 0.9118 ± 0.002 0.8733 ± 0.001 0.9346 ± 0.015 0.5003 ± 0.006 0.8456 ± 0.003 0.5285 ± 0.006 0.8793 ± 0.004

GEN-w/o-GV 0.9468 ± 0.009 0.8715 ± 0.001 0.9337 ± 0.001 0.5226 ± 0.004 0.8588 ± 0.003 0.5380 ± 0.010 0.8801 ± 0.003

GEN-FC-I 0.9014 ± 0.006 0.8783 ± 0.001 0.9374 ± 0.001 0.5253 ± 0.004 0.8622 ± 0.003 0.5631 ± 0.008 0.8875 ± 0.005

GEN-mFC-I 0.8932 ± 0.014 0.8794 ± 0.001 0.9380  ± 0.001 0.5227 ± 0.007 0.8568 ± 0.003 0.5488 ± 0.010 0.8873 ± 0.004

GEN-Att-I 0.8867  ± 0.006 0.8796  ± 0.001 0.9380  ± 0.001 0.5299 ± 0.005 0.8605 ± 0.003 0.5642  ± 0.004 0.8846 ± 0.004

GEN-FC-S 0.9745 ± 0.015 0.8685  ± 0.002 0.9322 ± 0.001 0.5180 ± 0.007 0.8527 ± 0.002 0.5401 ± 0.007 0.8846 ± 0.001

GEN-mFC-S 0.8989 ± 0.011 0.8779  ± 0.002 0.9371 ± 0.001 0.5217 ± 0.009 0.8575 ± 0.005 0.5457 ± 0.012 0.8833 ± 0.005

GEN-Att-S 0.9161 ± 0.013 0.8756  ± 0.002 0.9361 ± 0.001 0.5318  ± 0.005 0.8628  ± 0.006 0.5638 ± 0.007 0.8886  ± 0.004

Table 4.  New pair test results on the regression task on CCLE and CTRP. MSE: mean squared error; R 2 : 
coefficient of determination; R: Pearson correlation coefficient. The best performance of each dataset is in bold. 
a Represents the use of both gene expression and mutation data.

Method

CCLE CTRP

MSE R2 R MSE R2 R

DeepCDR 1.3044 ± 0.139 0.6576 ± 0.037 0.8141 ± 0.022 1.7711 ± 0.087 0.7336 ± 0.012 0.8566 ± 0.007

DeepCDR-GIN 1.0934 ± 0.093 0.7155  ± 0.020 0.8474 ± 0.011 1.5514 ± 0.018 0.7678 ± 0.002 0.8768 ± 0.001

SWneta 1.3003 ± 0.060 0.6579  ± 0.018 0.8157 ± 0.011 1.3655 ± 0.022 0.7955 ± 0.003 0.8935 ± 0.003

TGDRP 1.0933 ± 0.096 0.7153  ± 0.026 0.8492 ± 0.014 1.1275 ± 0.011 0.8299 ± 0.001 0.9111 ± 0.001

TGDRP-HV 1.0821 ± 0.021 0.7170  ± 0.090 0.8496 ± 0.012 1.1243 ± 0.017 0.8320 ± 0.003 0.9123 ± 0.002

GEN-w/o-GV 1.0915 ± 0.100 0.7123  ± 0.026 0.8474 ± 0.015 1.3450 ± 0.030 0.7980 ± 0.004 0.8937 ± 0.002

GEN-FC-I 1.1300 ± 0.100 0.7057 ± 0.024 0.8441 ± 0.013 1.1453 ± 0.020 0.8282 ± 0.003 0.9103 ± 0.002

GEN-mFC-I 1.0830 ± 0.098 0.7151 ± 0.026 0.8476 ± 0.015 1.1077 ± 0.020 0.8333 ± 0.002 0.9130 ± 0.001

GEN-Att-I 1.1375 ± 0.090 0.7051 ± 0.020 0.8419 ± 0.011 1.0831  ± 0.011 0.8375  ± 0.002 0.9153  ± 0.001

GEN-FC-S 1.1336 ± 0.091 0.7049 ± 0.024 0.8421 ± 0.013 1.2990 ± 0.009 0.8062 ± 0.002 0.8981 ± 0.001

GEN-mFC-S 1.0432  ± 0.075 0.7249  ± 0.022 0.8533  ± 0.012 1.1074 ± 0.011 0.8339 ± 0.001 0.9133 ± 0.001

GEN-Att-S 1.1647 ± 0.077 0.6975 ± 0.020 0.8386 ± 0.012 1.1667 ± 0.015 0.8244 ± 0.003 0.9081 ± 0.002
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gene sets as DeepCDR, DeepCDR-GIN, GEN-w/o-GV, and GENs-S, and the case is named ‘TGDRP-HV’. How-
ever, there was no significant difference between ‘TGDRP’ and ‘TGDRP-HV’. In comparison to the benchmark 
models, the results demonstrate that GENs outperformed all other models for both small and large datasets, as 
well as for both regression and binary prediction tasks. This suggests that GENs is a highly robust prediction 
model, and the most effective GENs (GEN-FC, -mFC, or -Att) varied depending on the properties of the dataset.

Table 5 shows the performance of all methods on GDSC-regression and -binary tasks in the new cell line 
test. In the test, all GENs also showed better performance compared with the other benchmark methods in both 
tasks. Specifically, GEN-FC-I and GEN-Att-S were the best and the second best methods in the regression task, 
respectively. GEN-Att-S was also the second best method, achieving a similar performance with the best method 
(GEN-w/o-GV) in the binary task. It is remarkable that F1 and AUPR of GENs show a larger improvement than 
AUC and ACC when compared with other benchmark methods, considering that non-responsive labels make 
up 87% of all labels in the GDSC dataset. Since precision and recall are inversely related, the F1 score and AUPR 
provide a balanced view as the performance measure of responsive and non-responsive labels. In short, GENs 
are more effective at accurately and consistently predicting positive labels than the benchmark methods. In con-
trast, even though TGDRP and GraphCDR were the second best in regression and binary tasks, respectively, in 
the new pair test, they showed the poor performance in the new cell line test. This result shows that GENs can 
more effectively encode embedding of previously unobserved cell lines compared to other benchmark methods.

Ablation studies
To evaluate the contributions of distinct factors, we designed a series of ablation studies to understand the impact 
of (1) gene embedding vectors, (2) the use of individual gene sets, and (3) variations of GEN (GEN-FC, -mFC, 
and -Att). First, the comparison between GEN-w/o-GV and GEN-FC-S helps us ascertain the significance of 
the gene embedding vector itself, independent of the individual gene sets and advanced encoders. Second, the 
comparison between GEN-w/o-GV and GEN-FC-I sheds light on the value of employing individual gene sets 
without advanced encoders. Third, when we compare GEN variants using either the same or individual gene sets 
across the three datasets, it provides insight into the strengths and weaknesses of each GEN variant. 

1. GEN-w/o-GV is superior to GEN-FC-S in most cases (Tables 3, 4, and 5). However, when using individual 
gene sets, GEN-FC-I exhibited better performance than GEN-w/o-GV, except in the cases of CCLE and 
the new cell line test of the GDSC-binary task. This suggests that simply using gene embedding could not 
guarantee better performance without individual gene sets.

2. To explore the impact of individual gene sets, we conducted a t-test between the usage of the same and 
individual gene sets in GEN in the new pair test (Table 6). In the t-test analysis, we observed that GEN-FC 
demonstrated more statistically significant improvements when employing individual gene sets compared to 
the advanced encoders (GEN-mFC and -Att) in the majority of cases. However, the usage of individual gene 
sets did not significantly improve all GEN in the CCLE, which has a small number of samples. In Table 6, 
only the GEN-mFC makes no statistically significant differences between individual and same gene sets 
across all datasets. It indicates that the interacting gene embedding has a similar impact as using individual 
gene sets. This suggests that using individual gene sets statistically improves performance, especially using 
the simple encoder (GEN-FC), and a sufficient number of samples are necessary to leverage the advantages 
of individual gene sets effectively.

Table 5.  New cell line test results on the regression and binary tasks on GDSC. MSE: mean squared error; 
R 2 : coefficient of determination, R; Pearson correlation coefficient; F1: F1 score; AUC: area under the curve 
receiver operating characteristic; AUPR: area under the precision-recall curve; ACC: accuracy. The postfixes -I 
and -S mean the use of individual gene sets and the same gene set, respectively. The best performance of each 
dataset is in bold. a Represents the use of both gene expression and mutation data.

Method

GDSC on regression task GDSC on binary task

MSE R2 R F1 AUC AUPR ACC 

DeepCDR 2.1765 ± 0.067 0.7032 ± 0.010 0.8393 ± 0.006 0.3510 ± 0.018 0.7024  ± 0.017 0.2940 ± 0.024 0.8255 ± 0.022

DeepCDR-GIN 1.8613 ± 0.017 0.7470 ± 0.003 0.8651 ± 0.002 0.3751  ± 0.021 0.7412  ± 0.016 0.3683 ± 0.025 0.8424 ± 0.011

SWneta 1.8861 ± 0.024 0.7416 ± 0.003 0.8631 ± 0.001 0.3655  ± 0.014 0.7425  ± 0.012 0.3382 ± 0.022 0.8402 ± 0.013

GraphCDRa – – – 0.2333 ± 0.010 0.5315 ± 0.044 0.2410 ± 0.161 0.2338 ± 0.192

TGDRP 1.8426 ± 0.063 0.7470 ± 0.010 0.8658 ± 0.004 0.3762 ± 0.011 0.7404 ± 0.010 0.3658 ± 0.009 0.8550 ± 0.007

GEN-w/o-GV 1.8089 ± 0.063 0.7542 ± 0.004 0.8694 ± 0.002 0.4101  ± 0.013 0.7704  ± 0.005 0.4028  ± 0.010 0.8528 ± 0.004

GEN-FC-I 1.7923  ± 0.036 0.7564  ± 0.004 0.8705  ± 0.002 0.4061 ± 0.015 0.7591 ± 0.013 0.3932 ± 0.014 0.8552 ± 0.018

GEN-mFC-I 1.8174 ± 0.029 0.7530 ± 0.005 0.8687 ± 0.002 0.3934 ± 0.014 0.7503 ± 0.010 0.3857 ± 0.014 0.8592 ± 0.005

GEN-Att-I 1.8124 ± 0.035 0.7537 ± 0.005 0.8685 ± 0.003 0.4018 ± 0.014 0.7555 ± 0.013 0.3907 ± 0.015 0.8572 ± 0.006

GEN-FC-S 1.8355 ± 0.028 0.7505  ± 0.003 0.8682 ± 0.002 0.4020 ± 0.018 0.7594 ± 0.013 0.3878 ± 0.017 0.8514 ± 0.008

GEN-mFC-S 1.8200 ± 0.026 0.7526  ± 0.002 0.8679 ± 0.001 0.3803 ± 0.016 0.7426 ± 0.011 0.3691 ± 0.015 0.8490 ± 0.010

GEN-Att-S 1.8198 ± 0.057 0.7527  ± 0.008 0.8691 ± 0.004 0.4091 ± 0.015 0.7623 ± 0.012 0.3958 ± 0.013 0.8616  ± 0.007
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3. In the new pair test (Tables 3 and 4), the GEN-Att outperformed the GEN-FC and -mFC in most cases, 
despite the GEN-mFC performing similarly to the GEN-Att. Only in CCLE with a small sample size, the 
GEN-Att was worse, whereas GEN-mFC was the best among GEN. These observations suggest that the atten-
tion mechanism requires a substantial number of training samples to increase performance, but GEN-mFC 
is robust regardless of sample count or input gene set. In short, in large and small datasets, the GEN-Att 
and -mFC are best, respectively. Only GEN-FC demonstrated a statistically significant improvement in the 
binary task when using separate gene sets (Table 6). Figure S3 in the Supplementary Materials reveals that, 
except for GEN-FC-I& S, all encoders were overfitted in the binary task because, unlike the regression tasks, 
the test and validation losses of most encoders increased after reaching the minimum value. In the new cell 
line test, where it is crucial to encode the less fitted representation on the cell lines, GEN-FC-I outperforms 
GEN-mFC-I& S and -Att-I, as shown in Table 5. These results indicate that GEN-mFC and -Att can improve 
the distinguishability of embedding vectors without using individual gene sets and that GEN-FC produces 
more generalized (less fitted) representations than GEN-mFC and -Att.

Additionally, we generated t-SNE plots of the sample embedding vectors using the same and individual gene sets 
on the GDSC dataset, as illustrated in Fig. 2. The results clearly indicate that using the same gene sets generates 
more clustered vectors, while individual gene sets generate more distinguishable encoding vectors. This finding 
aligns with the general understanding that having distinguishable encoding vectors for samples is beneficial for 
prediction tasks. Consequently, incorporating individual gene sets into the model may impact its representational 
power and improve performance.

We observed the following based on the results: (1) The usage of individual gene sets or advanced encoders 
makes a statistically significant improvement when using gene embedding vectors. It is worth noting that it is 
improper to rely solely on gene embedding without incorporating strategies to enhance the distinguishability 
of embedding vectors, such as the use of individual gene sets and advanced encoders. (2) The attention-based 
encoder (GEN-Att) makes the improvement when using individual gene sets and is more suited for larger data-
sets, even though it may not be the best option for smaller datasets. In contrast, the mFC encoder is robust to 
the number of samples in datasets, but it is hard to get additional improvement by using individual gene sets. 
(3) The GEN-FC produces more generalized representations, whereas the GEN-mFC and -Att with individual 
gene sets provide too distinct representation vectors, which would be unsuitable for a small dataset, the binary 
task, and the new cell line test.

Influence of individual gene sets on the performance
To explore the capability of the GEN in distinguishing differences between cell lines with individual gene sets, we 
instituted a gene expression value prediction task using the same setup and sample representation stages (Fig. S4 
in the Supplementary Materials). Specifically, in the training phase, the GEN leverages the expression values of 
individual 300 genes used in the cancer drug prediction task to predict the expression values of randomly selected 
50 genes from 18,618 genes. The test phase challenges the GEN to predict the expression values of all genes in new 
cell lines using their 300 individual genes. Because genes are highly correlated, this task can verify whether the 
GEN can learn the complex interaction between genes. In short, if the GEN can predict gene expression values 
of unseen samples, we may infer that the GEN can summarizel gene expression values and extract the general 
features of unseen samples using just 300 individual genes. The task is described in detail in the ‘Gene expression 
value prediction task’ section of the Supplementary Materials. In the experiment, the losses of all cases of GEN 
variants decreased in both the training and test stages (Figs. S5 and S6 in Supplementary Materials). Table S4 
in Supplementary Materials shows the average Pearson correlation between true and predicted gene expression 
values of all test samples in all cases of GEN variants, with GEN-Att and -FC performing best (0.9223) and worst 
(0.7247), respectively, similar to the GDSC regression task in the cancer drug response prediction.

Even though GEN can predict overall gene expression values with fairly reasonable performance by using 300 
individual genes, it is still hard to precisely predict all gene expression values, especially those deviating signifi-
cantly from the average expression values of samples. In short, for the gene expression prediction task, it would 
be relatively easy for the genes in which expression values are located around the mean value in most samples. 
In contrast, it would be hard for highly variable genes and over- or under-expressed individual genes to predict 
expression values. To represent it visually, for two samples (cosmic ids 1327771 and 906868), we drew four types 
of scatter plots between true and predicted values using all genes, randomly selected 300 genes, highly variable 
300 genes, and over- or under-expressed individual genes (Fig. S6 in Supplementary Materials). The cases of all 
genes and randomly selected 300 genes show higher correlations (Fig. S6a,b,e,f), while highly variable and over- 
or under-expressed genes show lower correlations (Fig. S6c,d,g,h). Because most genes of samples have the gene 

Table 6.  P-values of t-test on the new pair test results of the GENs between using the same and individual 
gene sets. Significant values are in bold.

GDSC on regression task GDSC on binary task CCLE CTRP

MSE R2 R F1 AUC AUPR ACC MSE R2 R MSE R2 R

GEN-FC 2.6E−4 1.2E−4 1.2E−5 0.12 9.7E-4 1.9E−3 0.28 0.89 0.90 0.59 1.55E−5 2.3E−5 2.0E−5

GEN-mFC 0.53 0.15 0.17 0.86 0.81 0.69 0.21 0.12 0.16 0.15 0.98 0.63 0.57

GEN-Att 7.4E−3 0.01 0.03 0.57 0.49 0.93 0.22 0.26 0.19 0.32 2.9E−5 1.7E−4 1.1E−4
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expression values around the mean values, the correlation coefficients of all genes and random genes are high. In 
contrast, gene expression values of the highly variable genes and over- or under-expressed genes are dispersed in 
a given population. Therefore, it is a more effective approach to use the hard-case genes as input genes because 
the hard-case genes have more information than the easy-case genes. It is worth noting that the over- or under-
expressed individual genes have lower correlations than highly variable genes. Considering these features, it 
would be better for GENs to use the over- or under-expressed individual genes than the common genes.

When using different gene sets for samples in GENs, we explored whether samples with a high prediction 
probability to specific drugs have shared common genes in their input genes. If so, we examined whether these 
genes held biological relation regarding to the target drugs. For this task, we selected three FDA-approved 
oncology drugs, fedratinib, belinostat, and dasatinib, and identified the five most common genes among samples 
having predicted probabilities greater than 0.9 for each drug response (Table 7). Firstly, fedratinib is the inhibitor 
of Janus activated kinase 2 (JAK2), and CCN1, TM4SF1, and TPD52L1 were most common genes in samples. 
It is known that CCN1 and TM4SF1 are indirectly associated with JAK2  activation36,37, and TPD52L1 interacts 
with apoptosis signal-regulating kinase 1 (ASK1)38, which is directly bound to  JAK239. Secondly, belinostat is a 
histone deacetylases (HDACs) inhibitor, and its primary FDA approval is for peripheral T-cell lymphoma (PTCL) 
treatment. CCN1, LAPTM5, and ArhGAP15 are among the most common genes. CCN1 is linked to HDAC1 
 inhibition40, and LAPTM5 has been identified as an mRNA signature for  PTCL41. For ArhGAP15, one of its 
gene family, ArhGAP30, is associated with histone acetylation, which is known to facilitate p53  acetylation42. 
Lastly, dasatinib is a multi-target tyrosine kinase inhibitor and is clinically approved for the treatment of chronic 
myelogenous leukemia and acute lymphocytic leukemia. Furthermore, recent studies have identified the poten-
tial to treat acute myeloid leukemia (AML) and triple-negative breast  cancer43–45. The most common genes of 
dasatinib are KRT8, TGFBI, KRT19, and PRSS23. KRT8 is a novel target in  AML46, and TGFBI is correlated 
with  DDR147, which belongs to the receptor tyrosine kinase family. KRT19 and PRSS23 have high associations 
with breast  cancer48,49.

Discussion and conclusions
This study aimed to investigate the effective encoding of genes in gene expression data and evaluate the appro-
priate utilization of gene embedding in prediction models, considering task-specific characteristics such as the 
number of training samples, the type of prediction task, and the new pair or cell line tests. Our study has yielded 
several important findings. Firstly, the use of gene embedding is generally superior to the conventional approach 
when using advanced encoders or individual gene sets. Secondly, incorporating individual gene sets is useful 
in generating more distinguishable sample embedding vectors, particularly in the case of GEN-FC. Thirdly, 
utilizing an interacting layer with other gene vectors (GEN-mFC and Att) enhances the representational power 
of the model compared to a simple non-linear fully connected layer (GEN-FC). Taking all of these results into 
account, it is not advantageous to use gene embedding with a simple, fully connected layer without individual 

Table 7.  Three FDA-approved drugs with high performance in the binary task and the five most common 
genes in each drug. The information of target genes refers to the official homepage of the GDSC, https:// www. 
cance rrxge ne. org/. Bold genes are known to be directly or indirectly related to the target drug in literature. 
Parentheses next to genes indicate the number of samples possessing those genes divided by the total number 
of selected samples.

Drugs Target genes Accuracies in positive samples Most common genes

Fedratinib JAK2 0.8108 CCN1 (0.922), TM4SF1 (0.863), GMFG (0.843), 
TPD52L1 (0.824), TGFBI (0.824)

Belinostat HDAC1 0.8101 MYOF (0.96), LAPTM5 (0.96), LCP1 (0.96), CCN1 
(0.96), ARHGAP15 (0.96)

Dasatinib ABL, SRC, Ephrins, PDGFR, KIT 0.8015 KRT19 (0.861), TGFBI (0.835), C19orf33 (0.759), 
PRSS23 (0.684), KRT8 (0.684)

Figure 2.  This figure presents t-SNE plots of encoding vectors produced by the GENs on the GDSC dataset, 
which represent the sample embedding in the representation stage shown in Fig. 1. (a) and (c) utilize the same 
gene set, whereas panels (b) and (d) use individual gene sets.

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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gene sets. However, the advanced encoding layers of GEN-mFC and -Att can produce a reasonable improvement 
in performance without individual genes. Thus, both individual gene sets and advanced encoding layers play a 
crucial role in encoding distinguishable sample embedding vectors.

In summary, GEN achieved better performance than other methods in cancer drug response prediction 
tasks. Moreover, using encoders with gene embedding vectors presents a novel possibility for employing various 
efficient architectures. While the approach was applied to gene expression data in this study, future research will 
focus on applying GEN to other omics datasets, including methylation and combinations of multi-omics datasets.

Data availability
Source codes of GEN and datasets are available at https:// github. com/ DMCB- GIST/ GEN.
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