
1. Introduction
Soil moisture (SM) is a variable of great importance in its capability of influencing land-atmosphere inter-
actions and its critical role in the hydrologic cycle (Koster et al., 2004, 2010; Petropoulos, 2013; Seneviratne 
et al., 2010). Satellite-based microwave remote sensing has emerged as a reliable tool for monitoring temporal 
variations of surface SM at a global scale, striking a balance between measurement accuracy, geographical cover-
age, and cost-effectiveness. The utilization of SM observations from various space-borne microwave sensors has 
greatly improved our understanding of Earth's systems, including climate variability, drought detection, water 
resource management, and agricultural monitoring (Fang et al., 2021; Findell et al., 2011; Ge et al., 2011; Koster 
et al., 2010; Miralles et al., 2014; Taylor et al., 2012). This progress has been facilitated by the availability of 
high-resolution spatial SM information from active microwave sensors like Advanced Scatterometer (ASCAT) 
and Sentinel-1 under the Copernicus Service, as well as fine-temporal-resolution SM variations from passive 
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microwave missions such as Soil Moisture Active Passive (SMAP) and soil moisture ocean salinity (SMOS) 
(Balenzano et al., 2021; Entekhabi et al., 2014; Mecklenburg et al., 2016; Wagner et al., 2013). Among them, 
the exceptional performance of SMAP SM retrievals has been extensively validated by rigorous studies and thus 
SMAP data have been applied in various hydrologic applications (Chan et al., 2018; Colliander et al., 2017; Ma 
et al., 2019; R. Zhang et al., 2021).

SMAP SM product has significantly advanced our understanding of SM dynamics at a global scale and offers 
a temporal resolution that is well-suited for a variety of applications, including climate modeling and agricul-
tural monitoring. However, for certain applications, there is a growing demand for SM data at a higher temporal 
resolution (sub-daily) and finer spatial scale (kilometer scale). For example, the need for sub-daily SM data 
sets has been emphasized in studies such as Peng et al. (2021), which highlight their importance in hydrologi-
cal modeling and numerical weather prediction. Additionally, surface SM exhibits a marked diurnal variation, 
and understanding the dynamics of diurnal SM is essential for enhancing our fundamental interpretation of the 
evaporation process (R. D. Jackson, 1973). Research focused on the diurnal SM cycle typically requires hourly 
SM information (T. J. Jackson et al., 1997). Moreover, there is a particular need for SM data closely neighboring 
extreme rainfall events to improve our understanding of the relationship between precipitation and flooding, thus 
enhancing our capability to predict and mitigate flooding events (Sharma et al., 2018; Wasko & Sharma, 2017).

In general, satellite-based SM retrievals are presented as a time series with a regular time step (such as 12-hourly 
or daily), and any gaps resulting from the revisit return time are represented as “NaN” values. For instance, the 
SMAP level 3 descending and ascending products can be aggregated into a 12-hourly data set but with a number 
of temporal gaps. To fill the temporal voids in those data sets and ensure a more complete representation of SM 
over time, various methods have been developed, primarily categorized into two groups. The first category fills 
the gaps in SM data sets by analyzing the temporal and/or spatial patterns observed in the available measure-
ments. Simple techniques like linear interpolation (LIP) are commonly used to estimate SM values between two 
consecutive observations. Advanced statistical modeling techniques, such as the three-dimensional optimization 
underlying the discrete cosine transforms, have been employed to achieve temporally seamless and even spatially 
complete SM records (ElSaadani et  al., 2021; D. Kim et al., 2016; Pham et al., 2019; G. Wang et  al., 2012; 
Q. Zhang et  al., 2021). In addition to analyzing SM patterns alone, many geostatistics and machine learning 
techniques have been utilized to establish relationships between SM and other relevant geophysical variables, 
such as brightness temperature, precipitation, soil texture, and temperature (Almendra-Martín et al., 2021; Y. 
Cui et  al.,  2019; Y. Liu et  al.,  2022; Llamas et  al.,  2020; Tong et  al.,  2021; Xiao et  al.,  2016). These tech-
niques leverage the available data of non-SM variables, which often have a higher temporal resolution than SM 
retrievals, to approximate SM values in the gaps. However, it is important to note that gap predictions based on 
spatial or temporal modes from existing retrievals may inherit the errors of the input products and often require 
compu tationally intensive processing. The second category merges information from multiple satellite platforms 
to enhance the actual temporal resolution of the SM data set, such as the European Space Agency Climate Change 
Initiative (ESA CCI) SM data set and the SMOSSMAP-IB product (Dorigo et al., 2017; S. Kim et al., 2021; Li 
et al., 2022). Another satellite mission called Cyclone Global Navigation Satellite System (CYGNSS), which 
utilizes L-band GNSS signals of opportunity, has been employed to retrieve SM with a higher temporal resolu-
tion (i.e., sub-daily). Although CYGNSS SM retrievals show comparable performance with SMAP data, they are 
limited in terms of irregular acquisition times and spatial coverage (38°N to 38°S) (H. Kim & Lakshmi, 2018; 
Ruf et al., 2018).

This research is dedicated to the creation of a process-based water balance scheme, designed to fill the tempo-
ral gaps in the SMAP data record, which are resulted from the satellite's revisit frequency. This water balance 
scheme, inspired by Koster et  al.  (2017), consists of two main steps. Initially, the integrated hydrologic loss 
encompassing evaporation and drainage, is estimated using the antecedent SM data. Subsequently, the unknown 
SM value in the next temporal gap is derived by subtracting the estimated loss from precipitation within a specific 
temporal interval. Modifications to this loss function (developed in the first step) were previously made by Akbar 
et al. (2018), who applied the adapted model to estimate the hydrological lengths (∆Z) across the conterminous 
United States (CONUS). Specifically, they constructed the loss function using a locally weighed linear smoother 
(LOWESS) technique with a fixed span of 65% to regress the observed loss rates to SMAP dry downs. However, 
the use of a constant span could overlook the broad range of observed losses at similar SM magnitudes and may 
not adequately reflect the pixel-specific characteristics. To address these issues, this study further refines the loss 
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function algorithm by integrating quantile regression with a pixel-specific parameter. This enhancement aims to 
provide more accurate sub-daily filled-in SM estimations for the 12-hourly SMAP product.

The process-based water balance model developed in this study falls under the first type gap-filling method 
mentioned earlier. However, it distinguishes itself from other approaches in this category by its simplicity and 
independence from purely numerical relationships with other SM-related variables, which can be challenging to 
interpret. Additionally, the proposed water balance model can approximate SM data at different temporal scales 
within a single simulation round, offering significant flexibility. In this study, the Global Precipitation Measure-
ment Mission (GPM) product with a temporal resolution of 30 min was utilized as the precipitation input. This 
high-resolution temporal data allows for the generation of SM simulations at various time scales, ranging from 
sub-hourly to yearly intervals, thereby accommodating a wide range of research needs. However, the focus of 
this study is on a fixed 12-hourly interval. This choice aligns well with the time difference between the SMAP 
descending (6 a.m.) and ascending (6 p.m.) overpasses and takes advantage of the 12-hr GPM product's ability to 
capture the extreme rainfall events more effectively than its finer-temporal-scale ones (Mazzoglio et al., 2019). It 
is important to note that the scope of this study does not include spatial gap-filling.

Our analyses focus on CONUS due to its diverse climatic regimes, vegetation conditions, and the availability of 
numerous ground-based SM measurement stations. Therefore, it provided a suitable setting for evaluating the 
performance of the continuous SM estimates derived from our process-based water balance scheme by compar-
ing them against in situ benchmarks. To the best of our knowledge, this study represents the first attempt to 
conduct a direct comparison between the precipitation-driven SM data derived from the proposed scheme and 
ground-based measurements. In addition to employing conventional validation metrics, this study assessed the 
capability of the SM product obtained by the proposed algorithm to accurately capture rainfall-induced SM 
peaks. Again, these immediate positive responses in SM time series play a crucial role in disaster prediction and 
hydrologic applications (Peng et al., 2021; Sharma et al., 2018).

This paper is organized as follows. In Section 2, the data sets and the corresponding preprocessing methodologies 
are presented. Following that, Section 3 describes the specific procedures used to forward simulations of SM. It 
also outlines the assessment strategies implemented to evaluate the accuracy of the gap-filled SM data sets. The 
results and discussion of the findings are presented in Section 4. Finally, conclusions followed by a summary are 
provided in Section 5.

2. Data
As summarized in Table  1, various data sets covering the period of 7  years (1 April 2015–31 March 2021) 
have been adopted in this study. These include (a) the National Aeronautics and Space Administration (NASA) 
SMAP SM product, (b) the reanalysis SM data set of the land component of the fifth generation of European 
Re-Analysis (ERA5-Land) developed by the European Center for Medium-Range Weather Forecast (ECMWF) 
(Muñoz-Sabater,  2019), (c) in situ SM measurements from 1,084 stations of the International Soil Moisture 
Network (ISMN) (Bell et al., 2013; Caldwell et al., 2019; Cook, 2016; Dorigo et al., 2013, 2021; Larson et al., 2008; 
Leavesley et al., 2008; Moghaddam et al., 2010; Ojo et al., 2015; Osenga et al., 2019; Schaefer et al., 2007) (see 
Table S1 in Supporting Information S1 (hereafter Figures and Tables in Supporting Information S1 use the prefix 
“S”)), (d) in situ SM measurements from 40 stations of the Texas Soil Observation Network (TxSON) (Caldwell 

Variable Product name
Spatial 

resolution Unit Reference

Volumetric Soil Moisture SMAP L3 enhanced soil moisture product (version 5) 9 km m 3/m 3 O'Neill, Chan, 
et al. (2021)

ISMN Point m 3/m 3 Dorigo et al. (2021)

TxSON Point m 3/m 3 Caldwell et al. (2019)

ERA5-Land 0–7 cm soil moisture 0.1° m 3/m 3 Muñoz-Sabater (2019)

Precipitation GPM IMERG half-hourly final-run Level-3 precipitation product (version 06B) 0.1° mm/hr Huffman et al. (2019)

NLDAS Primary Forcing L4 Hourly Precipitation (version 2.0) 0.125° kg/m 2/hr Xia et al. (2012)

Table 1 
Summary of Data Sets Used in This Study
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et al., 2019), (e) half-hourly precipitation estimates from the final-run Integrated Multi-SatellitE Retrievals for 
GPM IMERG (Hou et al., 2014), and (f) hourly precipitation data from the North American Land Data Assimi-
lation System (NLDAS) (Xia et al., 2012).

Given the objective of building a 12-hourly continuous SM data set at a Coordinated Universal Time (UTC) 
timescale, the local-time-based SMAP retrievals were interpolated into the closest time slots of UTC 00:00 and 
12:00 using the nearest neighboring method. This adjustment process was constructed on a crucial hypothesis of 
invariable SM within a (±) 3-hr interval. Accordingly, the hourly available ERA5-Land and the in situ SM data 
synchronized with the UTC 00:00 and 12:00 were extracted for validation. After temporal processing, the gridded 
GPM IMERG and ERA5-Land products were then resampled into the Equal-Area Scalable Earth (EASE) 9-km 
scale to be compatible with the SMAP spatial resolution.

2.1. SMAP Soil Moisture

The SMAP mission was launched on 31 January 2015, by NASA for quantifying the representative water 
content at the top 5 cm of the full soil column and detecting freeze/thaw states at a quasi-global scale (Entekhabi 
et al., 2014). The SMAP sensor crosses the equator constantly at around 6 a.m. and 6 p.m. (local solar time) and 
monitors SM variations with a revisit frequency of 2–3 days (O'Neill, Bindlish, et al., 2021). In order to satisfy 
the research requirements of hydrometeorology and hydroclimatology, SMAP originally intended to incorporate 
the attributes of active and passive microwave sensors to provide high-resolution SM retrievals. However, the 
malfunction of the SMAP radar in July 2015 hampered the initial goals. Alternatively, the Backus-Gilbert opti-
mal interpolation technique is adopted on the oversampled measurements of the SMAP radiometer to derive an 
enhanced SM product posted at the 9-km EASE grids (O'Neill, Bindlish, et al., 2021).

In this study, the SMAP Enhanced Level-3 Radiometer Global Daily 9-km EASE-Grid SM (version 5) product 
(hereinafter referred to as SMAP) has been selected. An integrated consideration of both geographical coverage 
and the quality of the filled-in SM estimations, a series of filtering procedures have been adopted. Specifically, 
the regions of vegetation water content (VWC) below 7 kg/m 2 are retained to include more areas of eastern 
CONUS (Akbar et al., 2018). It should be noted that this VWC of 7 kg/m 2 is less restricted relative to the recom-
mended threshold of 5 kg/m 2 (O'Neill, Bindlish, et al., 2021). In contrast, a more rigid water fraction threshold 
of lower than 1% of water bodies within each 9-km pixel has been applied. Moreover, the pixel-wise soil porosity 
value (Φ) was computed using the bulk density (BD) under the SMAP ancillary data set, following the equation 

𝐴𝐴 Φ = 1 − BD∕2.65 (Das & O'Neill, 2020). These derived Φ values are essential for constructing the loss functions 
discussed in the later part of the paper (Section 3.2).

2.2. In Situ Soil Moisture Measurements

In situ measurements are often acknowledged as the most reliable source and widely performed as benchmarks to 
assess remotely sensed SM retrievals and model estimations. The ISMN (Dorigo et al., 2013, 2021), as a central-
ized data platform, regularly compiles and reconciles ground SM observations from different networks all over 
the world. For the purpose of ensuring a rigorous assessment, in situ observations that were not symbolized as 
“good” quality or exhibited a measuring depth beyond 10 cm were filtered out. Meanwhile, stations presenting 
fewer than 60 effective SM samples were omitted to uphold the statistical significance. Although the evaluation 
results based on the sparse networks tend to be slightly inferior to those obtained from the core validation sites, 
they are still of high value due to the wide geographical coverage (Chan et al., 2018; R. Zhang et al., 2019).

If the average assessment metrics were calculated using all the metrics obtained by comparing SM retrievals 
against all the stations, there is a risk of placing excessive weight on pixels with multiple stations. To mitigate 
this issue, a strategy was implemented to select only one station as the representative for each pixel. The selection 
process followed the steps outlined in Dorigo et al. (2015). Here, for each station (STNx) within a pixel, the Pear-
son Correlation (R) values between the SMAP/ERA5-Land and STNx were separately computed. The averaged R 
values for R [SMAP, STNx] and R [ERA5-Land, STNx] were compared, and the station with the highest mean R 
value was chosen as the pixel representative.

2.3. GPM IMERG Half-Hourly Final-Run Precipitation

The GPM IMERG half-hourly final-run precipitation Level-3 product (Version 6B) has been applied to provide 
the water inputs to the upper soil system. It combines observations from multiple satellite missions, including 
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the GPM Core Observatory, along with other passive microwave and infrared sensors, to provide accurate and 
detailed estimates of precipitation rates and accumulation (Huffman et al., 2019). With a temporal resolution 
of half-hourly intervals and a spatial resolution of 0.1°, the GPM IMERG final-run product enables study of 
fine-scale precipitation patterns and variability on a quasi-global scale. To ensure accuracy, the final-run product 
incorporates measurements from ground-based gauges, albeit with a delayed release of approximately 3.5 months 
after the observation month.

As our study focuses on a 12-hr time step, the 30-min Level 3 GPM IMERG final-run (hereinafter referred to 
as GPM) precipitation volumes were aggregated for the time intervals: UTC 00:00 to 12:00 and UTC 12:00 
to 00:00. These time slots correspond to local time 18:00 to 06:00 and local time 06:00 to 18:00 in the central 
CONUS, between the SMAP ascending and descending overpass moments. Subsequently, the GPM precipita-
tion was re-gridded to the 9 km EASE 2.0 grid projection before extracting the SMAP dry-down SM values. By 
aligning the study period with the overlapping data range between the GPM and SMAP products and a complete 
annual cycle, we established the study period from 1 April 2015, to 31 March 2021.

2.4. NLDAS Primary Forcing L4 Hourly Precipitation

In this study, the NLDAS hourly precipitation data were utilized to evaluate the model's ability to capture 
rainfall-induced SM peaks (Xia et al., 2012). The NLDAS precipitation data, included as an independent source, 
could differ from the GPM precipitation used in identifying rainfall occurrences. The precipitation field in 
“File A” corresponds to a temporal disaggregation of a gauge-only Climate Prediction Center (CPC) analysis of 
daily precipitation, adjusted for orographic effects using the widely applied Parameter-elevation Relationships 
on Independent Slopes Model (PRISM) climatology. The temporal disaggregation process involves deriving 
hourly weights from WSR-88D Doppler radar-based precipitation estimates, 8-km CPC MORPHing technique 
(CMORPH) hourly precipitation analyses, or the Northern American Regional Reanalyzes (NARR)-simulated 
precipitation, in order of availability. For pixels with in situ SM stations, the NLDAS hourly precipitation was 
extracted and aggregated into a 12-hr precipitation data set. The specific utilization of this 12-hourly NLDAS 
precipitation is further discussed in Section 3.3 of this paper.

3. Methods
3.1. Estimation of the Integrated Hydrologic Loss

The hydrologic process taking place in the topsoil layer can be simplified into three main components: precipita-
tion (input), hydrologic loss (output), and changes in SM (change in storage) (Equation 1). Given that the water 
inputs are known in advance, it is crucial to accurately quantify the loss rate (Q) to ensure the reliability of the 
derived SM.

∆𝑍𝑍 ⋅

SM𝑡𝑡+∆𝑡𝑡 − SM𝑡𝑡

∆𝑡𝑡
= 𝑃𝑃 (𝑡𝑡 ∼ 𝑡𝑡 + ∆𝑡𝑡) −𝑄𝑄(𝑡𝑡 ∼ 𝑡𝑡 + ∆𝑡𝑡) (1)

where SMt and SMt+∆t (m 3/m 3) represent volumetric SM at time points t and t + ∆t, respectively. ∆t (day) is the 
time interval. ∆Z (mm) denotes the hydrologic depth within which SM data have similar dynamics. P and Q are 
the precipitation (mm/day) and loss rates (mm/day) during the time interval.

Akbar et al. (2018) showed that 𝐴𝐴 𝐴𝐴 can be expressed as the product of 𝐴𝐴 ∆𝑍𝑍 and the volumetric loss rate (𝐴𝐴 𝐴𝐴 ) (Equa-
tion 2). Additionally, 𝐴𝐴 𝐴𝐴 can be approximately estimated using the SMAP dry-down SM.

𝑄𝑄 = ∆𝑍𝑍 ⋅ 𝐿𝐿 (2)

where L is the loss rate in the volumetric unit (m 3/m 3/day).

The SMAP observed dry downs are identified as consecutive periods of decreasing SM. Each dry-down period 
is defined by at least three consecutive SMAP observations with no recorded precipitation in between (Akbar 
et al., 2018). SMAP dry-down SM data were identified and collected in a separate set (Figures 1a and 1b). Then, 
the daily rate of L for each dry-down period is estimated using Equation 3. It is important to note that the loss 
rates derived from Equation 3 are solely based on observed SM retrievals, operating under the assumption that 
the variations in SM during non-raining conditions are indicative of loss quantifications. Despite the term loss 
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encapsulating various hydrological processes including drainage, runoff, and evapotranspiration, stage II evap-
otranspiration is typically the principal influence of SM fluctuations during most dry-down phases (McColl, 
Wang, et al., 2017).

𝐿𝐿obs = −
SMAP𝑑𝑑𝑑𝑑(𝑡𝑡 + ∆𝑡𝑡obs) − SMAP𝑑𝑑𝑑𝑑(𝑡𝑡)

∆𝑡𝑡obs

 (3)

where the subscripts obs and dd indicate the observation-based derivations, and the SMAP dry-down SM meas-
urements, respectively.

When the dry-down SM data are not available, it becomes impractical to estimate the integrated loss using Equa-
tion 3. Additionally, relying on an intermittent product of L is insufficient to maintain a continuous cycle of the 
water balance equation described in Equation 1. To address this issue, a simple solution is to assume that the 
value of L over a given time interval is a function of the initial and/or final SM values within that period (Akbar 
et al., 2018; Brocca et al., 2019; Koster et al., 2018). In this study, we presumed that the estimated loss rate (Lest) 
was predominately governed by the initial SM (SMt) of a given time slot (Equation 4), and this Lest remains 
consistent over a 12-hr period.

𝐿𝐿est(𝑡𝑡 ∼ 𝑡𝑡 + 0.5) = 𝑓𝑓 (SM𝑡𝑡) (4)

where Lest(t ∼ t + 0.5) represent the estimated volumetric water loss between t and 0.5 days after t. f() displays the 
regressed relationship between the loss and initial SM.

The quantitative relationship between L and SMt can be determined by regressing the available Lobs (calculated 
using Equation 3) to SMt of the corresponding dry-down limbs. Here, a dry-down limb refers to a subsection of 
a dry-down SM time series, consisting of two consecutive decreasing SM retrievals. Specifically, two regression 
methods, namely LOWESS with a span of 65% (Akbar et al., 2018) and the quantile regression approach (Magan 
et al., 2020; Wasko & Sharma, 2014) with a performance-driven percentile (β) have been adopted and compared.

Since Equation 4 was constructed based on the SMAP dry-downs, it is assumed to be more suitable when SM 
falls within the minimum (p1) and maximum (p2) of SMAP dry-downs. Given the broad range of SM, four distinct 

Figure 1. (a) An example of the Soil Moisture Active Passive (SMAP) soil moisture (SM) and the GPM precipitation time series for a pixel centered on (36.25°N, 
120.58°W) from 1 November 2016, to 1 January 2017. (b) All the SMAP SM dry-downs are stacked together; (c) The quantitative relationship between the dry-down 
SM and its paired loss. Regression analyses, including the LOWESS with a constant span of 65% (black line) and the quantile regression with β (blue line), have been 
performed within the SMAP dry-downs range (Segment B). Lines in Segments A and C are linearly extended along the line of Segment (b). Again, p1 and p2 denote the 
minimum and maximum SMAP dry-down SM while Φ is the soil porosity.
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formulas have been separately employed for four SMt domains: [0.02, p1] (Segment A), [p1, p2] (Segment B), 
[p2, porosity (Φ)] (Segment C), and values above Φ (Segment D). When the SMt lies between [0.02, p1], the loss 
function defined for Segment A linearly interpolates between the points [0.02, Lest(0.02)] and [p1, Lest(p1)], with 
Lest(0.02) presumed to be 0 m 3/m 3/day. Similarly, the loss function defined for Segment C linearly interpolates 
between [p2, Lest(p2)] and [Φ, Lest(Φ)]. Given the Lest(Φ) is unknown, a slope parameter α has been introduced, 
the value of which can be determined through an optimization search in the forward simulation displayed in 
Section 3.2. Once the initial SM values reach saturation (Segment D), the excessive water majorly owing to runoff 
and drainage is integrated into the Lest for the next 12-hr interval.

�est(� ∼ � + 0.5) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(SM� − 0.02) ⋅ �est(�1)−�est(0.02)

(�1 − 0.02) 0.02 < SM� < �1 SegmentA

� (SM�) �1 ≤ SM� ≤ �2 SegmentB

�est(�2) + � ⋅ (SM� − �2) �2 < SM� ≤ Φ SegmentC
� (�∼�+0.5)

∆�
+ (SM� −Φ)

∆�
SM� > Φ SegmentD

 (5)

where p1 and p2 are the maximum and minimum SMAP dry-down SM, and Φ is the porosity.

The full form of the loss function has been illustrated in Figure 1c where the loss amounts monotonically elevate 
with the increase of SM. Within an acceptable range of SM values, spanning from 0.02 m 3/m 3 to Φ, the sensitiv-
ity of loss values is more pronounced at the dry and wet extremes than at median SM levels (Koster et al., 2018; 
Salvucci, 2001).

3.2. Forward Simulation of Rainfall-Driven Soil Moisture

Given that L has been described as a function of SMt, SMt+0.5 can be predicted as long as P and SMt are avail-
able (Equation 6). However, there are still two parameters, ∆Z and α, that remain to be determined. A third 
parameter, β, will also be required if the quantile regression is used to build the function in Segment B. The 
optimal values of these parameters were obtained by minimizing the root-mean-square error (RMSE) between 
the precipitation-driven SM estimations and SMAP retrievals.

SM𝑡𝑡+0.5 = SM𝑡𝑡 + 0.5 ⋅

[

𝑃𝑃 (𝑡𝑡 ∼ 𝑡𝑡 + 0.5)

∆𝑍𝑍
− 𝐿𝐿est(𝑡𝑡 ∼ 𝑡𝑡 + 0.5)

]

 (6)

Using Equation 6, SM can be continuously simulated by inserting one initiated value for SM at the beginning 
of the study period. Simulated SM products in this way are expressed as PLO (P: Precipitation-driven simula-
tion + L: “LOWESS” regression + O: One initiated SM), and PQO (P: Precipitation-driven simulation + Q: 
Quantile regression + O: One initiated SM).

However, the precipitation-reconstructed SM estimates are prone to suffer from the errors, possibly resulting in a 
large deviation between the predicted and observed SM in the late or particular stage of simulation. These errors 
could be sourced from the occasional mismatching between rainfall and SM data sets as well as from the inappro-
priate derivations of hydrologic losses. Given this, SMAP dry downs were incorporated to displace their concur-
rent SMt in Equation 6 to proceed the precipitation-driven process. This reset segments the simulation process 
into discrete intervals bounded by SMAP consecutive dry downs, aiming to mitigate the cumulative simulation 
errors encountered by the PLO over a 6-year span. A preliminary analysis (not shown here) revealed that the PLO 
SM estimates exhibited excessively rapid drying rates. The incorporation of SMAP dry downs into the simulation 
procedure has shown promise in ameliorating this issue. Therefore, the SMAP dry-downs could also be labeled as 
correction points or as lifting-up measures. The number of SMAP dry-down SM is around 12% of the total SMAP 
observations (4% of 12-hr continuous SM simulations over the 6-year period). Thus, the precipitation-driven 
SM products including the original SMAP dry downs are entitled as PLD (PL + D: Dry-down SM) and PQD 
(PQ + D: Dry-down SM), respectively.

Finally, PQF (PQ  +  F: gap-Filled) was generated to supplement the missed SM at a 12-hourly scale of the 
combined descending and ascending SMAP L3 product. Similar to PQD, the simulated SM was immediately 
displaced by the simultaneous SMAP observation. As the optimization objective is to minimize the RMSE 
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between the simulated SM data and their temporally paired SMAP observations, the benchmark data set and the 
optimization process will become ineffective when all the SMAP data are involved in the simulation. Hence, PQF 
was derived using the optimal parameters obtained from the PQD, and a rerun of Equation 6. PQF is the ultimate 
product conforming to the major purpose here that solely fills the SMAP temporal gaps. A summary of different 
simulated SM products is described in Table S2 in Supporting Information S1.

The selection of the optimal methodology flow from those described above (i.e., PLO, PLD, and PQD) was based 
on the simulation results from the representative 9-km pixels. In order to cover a wide variety of land surface 
conditions, the CONUS matrix (285 × 644) composed of 9-km grids was first divided into 15 × 28 coarse-scale 
blocks. Each block encompassed 19 × 23 9-km pixels, and then a pixel was randomly selected from each block. 
Before the random procedure, the pixels with dry-down limbs of fewer than 50 and the blocks of fewer than 
10 effective pixels were excluded. As a result, 260 pixels out of 420 blocks were determined and extracted as 
the representative points. By conducting the simulations within the representative pixels instead of the entire 
CONUS, the computational time was significantly reduced. Although there is some risk associated with deter-
mining the optimal methodology flow based on 260 grids, the results were found to be consistently stable when 
conducting multiple tests using different random pixels.

3.3. Detection of Rainfall-Induced Soil Moisture Peaks

Understanding rainfall-induced SM peaks and their underlying causes is crucial for characterizing SM dynam-
ics. Figure S1 in Supporting Information S1 illustrates the methodology used to examine alignment between the 
rainfall-induced SM peaks detected by in situ SM measurements and SM estimations derived from precipitation 
data (e.g., PQD). The process consists of four main steps. First, consecutive NLDAS data with precipitation rates 
above 0.5 mm/day were grouped separately to represent distinct rainfall events. To illustrate, consider a sequence 
of six NLDAS data spanning from 12:00:00 on Day 1 to 00:00:00 on Day 4, each registering rates surpassing the 
0.5 mm/day threshold. The ensuing observation at 12:00:00 on Day 4 recorded a rate of 0 mm/day. In this context, 
NLDAS timestamps, whether at 12:00:00 or 00:00:00 on Day X, represent averaged precipitation rates for the 
preceding 12-hr interval. Given this scenario, the contiguous set of the first six observations would be grouped 
as a single, independent rainfall event. The timestamps of each independent rainfall event were subsequently 
logged. These documented times were collected as the precipitation-based anticipated times for SM peaks. As 
those precipitation-driven SM data sets had been derived based on the GPM observation, an independent NLDAS 
product was thus incorporated here to avoid overestimating their peak-capturing capacity. Second, a peak detection 
algorithm (MathWorks, 2020) was employed to identify the time indexes of SM peaks in in situ and simulated SM 
time series. A peak was determined if the corresponding value was higher than the points before and after it. The 
time indexes of peaks identified by the aforementioned peak detection algorithm were recognized as the SM-derived 
expected timestamps for SM peaks. Subsequently, the overlap between the precipitation-based anticipated times for 
SM peaks and the SM-derived expected timestamps for SM peaks was examined, and the peaks at these overlapping 
times were defined as rainfall-induced SM peaks. Following the time order of independent rainfall events, the binary 
array was separately generated for in situ SM product and the precipitation-driven SM data sets, indicating the 
presence or absence of rainfall-induced SM peaks. Herein, independent precipitation events with rainfall-induced 
SM peaks were denoted as 1, while events without rainfall-induced SM peaks were labeled as 0. Finally, the binary 
array derived from the in situ SM measurements served as the reference and was juxtaposed against binary arrays 
from precipitation-driven SM data sets. This comparison is done by calculating categorical metrics, as described in 
Section 3.4, to evaluate the agreement between the observed and simulated rainfall-induced SM peaks.

3.4. Statistical Metrics

Statistical metrics are required to reflect the quality and accuracy of different data sets. Here, the quantitative 
metrics, that is, unbiased RMSE (ubRMSE) and R, were adopted to describe the discrepancies in magnitudes and 
temporal correlations between the precipitation-based SM and the benchmark data sets. For purposes of captur-
ing rainfall-induced SM peaks, three categorical scores, that is, the probability of detection (POD), false alarm 
ratio (FAR), and critical success index (CSI) have been computed. The formulas of all the statistical metrics are 
presented below.

ubRMSE =

√

𝐸𝐸
[

(𝜃𝜃sim − 𝜃𝜃ref)
2
]

− 𝐸𝐸[(𝜃𝜃sim − 𝜃𝜃ref)]
2 (7)
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𝑅𝑅 =
𝐸𝐸[(𝜃𝜃sim − 𝐸𝐸[𝜃𝜃sim])(𝜃𝜃ref − 𝐸𝐸[𝜃𝜃ref])]

𝜎𝜎sim𝜎𝜎ref

 (8)

POD = �
� +�

range [0, 1], optimal∶ 1 (9)

FAR = �
� + �

range [0, 1], optimal∶ 0 (10)

CSI = �
� + � +�

range [0, 1], optimal∶ 1 (11)

where E[] represents the expected value; θsim and θref denote the SM from simulation product and reference 
data set; σsim and σref refer to the standard deviations of simulated and referenced SM data; H is the number of 
rainfall-induced SM peaks simultaneously detected by a simulated data set and in situ measurements; F is the 
number of rainfall-induced SM peaks detected by a simulated data set but not observed by in situ measurements; 
and M is the number of rainfall-induced SM peaks observed by in situ measurements but not detected by the 
simulated product.

3.5. Penalized Least Square Regression Based on Three-Dimensional Discrete Cosine Transform

An additional gap-filling method, a penalized least square regression based on three-dimensional discrete cosine 
transform (DCT), has also been adopted to complement the SMAP gaps at a 12-hourly temporal step. Then, the 
magnitudes and dynamics of its filled-on SM were analyzed and compared with those SM estimates derived from 
the above process-based model by validation against the in situ observations. The DCT was originally proposed 
by Garcia (2010) to smooth multidimensional incomplete data, and G. Wang et al. (2012) extended this technique 
for the application of complementing spatiotemporal gaps for large-scale geophysical data sets. Specifically, 
the penalized least square regression (PLS) is targeted to find a model that fits the data well by minimizing the 
squared difference between the modeled and actual data while adding a penalty term to avoid overfitting. Thus, 
the objective function of the PLS purses the least summation of the squared difference and the penalty term (i.e., 
Equation 12).

�
(

�̂
)

=
‖

‖

‖

‖

�
1
2 ◦

(

�̂ −�
)‖

‖

‖

‖

2

+ �‖‖
‖

∇2�̂‖

‖

‖

2 (12)

where D and �̂ represent the three-dimensional SM arrays from the SMAP product and the SMAP-derived data 
set without missing values, respectively; W is a binary array of the same size of D to identify whether SMAP 
data are available or not; ‖…‖ is the Euclidean norm, while ⸰ and ∇ 2 denote the Schur product and the Laplace 
operator; s is a positive scalar reflecting the smooth degree.

The discrete cosine transformation can convert the multidimensional data into a group of cosine functions with 
different frequencies and phases, and the PLS regression can be conducted on the data set transformed using the 
discrete cosine transformation. Hence, the �̂ can be obtained via:

�̂ = IDCT
(

Γ ◦DCT
(

� ◦
(

� − �̂
)

+ �̂
))

 (13)

where IDCT and DCT mean the inverse discrete cosine transformation and discrete cosine transformation conver-
sions; Г represents a three-dimensional filtering tensor here.

Γ𝑖𝑖1 ,𝑖𝑖2 ,𝑖𝑖3
=

⎛

⎜

⎜

⎝

1 + 𝑠𝑠

(

3
∑

𝑗𝑗=1

(

2 − cos
(𝑖𝑖𝑗𝑗 − 1)𝜋𝜋

𝑛𝑛𝑗𝑗

)

)2
⎞

⎟

⎟

⎠

−1

 (14)

where ij is the ith element in the jth dimension (j = 1, 2, or 3 here); nj represents the size of D along the jth 
dimension.

The smoothing factor, s, thus becomes the only unknown parameter, and a previous investigation has concluded 
that the 10 −6 is an optimal value for s considering the scale of the reconstruction error (G. Wang et al., 2012). The 
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detailed mathematical derivations and the selection of the smoothing parameters can be referred to Garcia (2010) 
and Mironov et al. (2012); G. Wang et al. (2012).

4. Results and Discussion
4.1. Determination of Optimal Simulation Flow

The performance of the precipitation-driven SM data set relies on the accuracy of loss estimations and the qual-
ity of precipitation input. Comparison of various precipitation products is beyond the scope of this study. In the 
context of the water balance model proposed herein, this section primarily aims to address two questions: (a) 
which loss function, LOWESS-based or quantile regression-based, does yield SM estimations of better perfor-
mance? (b) what is the magnitude of enhancement in the derived SM time series upon integrating dry-down SM 
into the simulation process, compared to employing the initial SM exclusively? Given these, four methodology 
flows (i.e., PLO, PLD, PQO, and PQD) were evaluated by comparing against the SMAP observations over the 
representative pixels (Figure S2 in Supporting Information S1; Section 3.2). The objective behind this incorpora-
tion is to discern the optimal simulation workflow conducive to producing high-quality SM.

The common parameters (∆Z and α) (Figures 2a and 2b) and performance metrics (ubRMSE and R) (Figures 2c 
and 2d) of precipitation-driven simulations from four different methodology flows (i.e., PLO, PLD, PQO, and 
PQD) are illustrated below. The PQD shows a pronounced superiority over the PLO, PLD, and PQO (Figures 2c 
and 2d) whereas the PQO exhibits a comparable performance with the PLO and PLD. The latter result indicates 
that while the introduced β is pixel dependent, employing a quantile-regression-based loss function with only one 
initiated SM does not significantly improve the SM simulations conducted via the proposed water balance model.

Since more SMAP data have been incorporated into the PLD and PQD, their validation results tend to outperform 
the PLO and PQO. Despite this, the improvement of the PLD relative to the PLO is marginal, potentially due to 
the low occurrence of dry-down events within the SMAP records. This observation implies that the substantial 
enhancement witnessed in PQD, as opposed to PQO, cannot be solely attributed to the additional dry-down SM 
observations in the PQD time series. Instead, it is the synergistic effect of combining dry-down SM with the 
additional parameter β in the simulation process, resulting in the superior performance of PQD. The preliminary 
investigations (not shown here) reveal that the drying rates of the PLO and PQO are excessively fast, resulting 

Figure 2. Boxplots of the optimal parameters (a) ∆Z (mm) and (b) α, and performance metrics of (c) unbiased 
root-mean-square error (m 3/m 3) and (d) R calculated by separately comparing the PLO, PLD, PQO, and PQD against the Soil 
Moisture Active Passive retrievals.
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in numerous extremely low SM values. This, in turn, results in the prediction of low loss amounts, subsequently 
causing abrupt SM spikes upon the occurrence of rainfall events. The integration of dry-down SM into the simu-
lation process can mitigate this issue.

Based on Figure 2b, the parameter α is insensitive to different methodology flows considered here. Conversely, 
the values of ∆Z exhibit significant variance across the various simulation pathways. In Figure 2a, there is a 
pronounced stretch and a high average for ∆Z values of the PQD. It should be noted that ∆Z does not serve as 
an indicator of the microwave radiometer's sensing depth. Rather, ∆Z represents the depth within which SM 
variations exhibit temporal analogies and its value is predominately controlled by precipitation characteristics 
(Akbar et al., 2018). Furthermore, the variation in 𝐴𝐴 Δ𝑍𝑍 is consistent with the findings of H. Kim and Crow (2024), 
indicating that 𝐴𝐴 Δ𝑍𝑍 is likely subject to spurious biases stemming from limitations in the temporal resolution 
and accuracy of satellite-based SM estimates, as well as the omission of other hydrological factors. Despite the 
distinctive discrepancies of ∆Z values between the PLO and PQD, the comparable spatial distribution of ∆Z 
across the CONUS and similar median values (139 mm for PQD and 135 mm in Akbar et al. (2018)) have been 
observed in Figure S3 in Supporting Information S1. The elevated ∆Z values within the PQD framework could 
signify a tendency toward lower loss amounts. This observation can be interpreted as a strategic adjustment by 
the PQD methodology, aimed at mitigating the issue of unduly rapid drying rates that characterized the PLO and 
PQO. Incorporating the additional parameter β into the loss function has endowed ∆Z with greater adaptability. 
The simultaneous application of ∆Z and β facilitates a balance interchange, ensuring a steady range of SM varia-
tions throughout the optimization process. These cannot be achieved by the application of LOWESS with a fixed 
span of 65%. Moreover, the parameter β could reflect pixel-scale climatic and geographical characteristics. The 
harmonization of addressing the rapid drying rate issue, the utilization of diverse parameter set combinations, and 
the application of pixel-specific β values within the optimization procedure collectively contribute to the superior 
performance of the PQD methodology over other approaches. Although the application of the parameter β still 
cannot fully capture the scattered losses at higher SM values, this scheme represents an optimal option consider-
ing accuracy. Based on all the above findings, the PQD methodology was decided as the operational approach for 
the precipitation-reconstructed SM simulations and parameter derivations in the following analysis.

4.2. Overall Performance of Precipitation-Driven Soil Moisture

The ubRMSE quantifies the discrepancies in absolute magnitude between the PQD and the SMAP retrievals. 
The ubRMSE map (Figures 3a, 3c, and 3d) exhibits an east-west gradient in its distribution. The relatively higher 
deviations of the PQD in the eastern CONUS could be partly attributed to the generally larger SM values caused 
by more precipitation volumes. Additionally, the SMAP SM data in the eastern sides were mostly retrieved under 
the VWC of more than 5 kg/m 2, which is a commonly used threshold to screen out low-quality SM estimates 
from densely vegetated areas (O'Neill, Bindlish, et al., 2021). Therefore, the loss estimations derived from the dry 
downs of inferior SMAP SM data may not function as quantitatively well as in regions with VWC below 5 kg/m 2.

The spatial distributions of R between the PQD and the SMAP retrievals are illustrated in Figures 4a, 4c, and 4d. 
The median R of 0.69 indicates a good agreement between the temporal variations described by the PQD and the 
SMAP observations throughout the entire study period. Previous studies (Akbar et al., 2018; Koster et al., 2017) 
focused on performing this process-based water balance scheme over summer seasons with sufficiently available 
SMAP retrievals and at a scale of 36 km. Moving forward, in this analysis, a separate comparison was made 
between the 9 km PQD and SMAP SM data for both cold seasons (November to April) and warm seasons (May 
to October). In terms of R, there is a noticeable degradation in the performance of SM simulations over cold 
seasons relative to warm seasons (Figure 4b). In the high-latitude areas, the R values quickly drop from 0.7 to 0.5 
(Figures 4c and 4d), which could be attributed to the low availability of the SMAP benchmarks during winter due 
to long frozen periods and/or frequent snowfall events. However, it is interesting to note that there is an improve-
ment in R values in the western CONUS during cold seasons (Figure 4d). This enhanced performance during 
cold seasons can likely be attributed to the distinctive seasonal rainfall patterns in the western CONUS, where 
precipitation is both more voluminous and frequent in the winter months compared to summer. The observed 
favorable results over the western CONUS in winter appear to be in contrast with the observations made by Akbar 
et al. (2018), which indicated potential limitations of the loss-function-based water balance model in this region.

The reduced performance of the PQD product observed throughout the majority of CONUS during winter months 
can be principally attributed to the evapotranspiration discrepancy between summer and winter. Although the loss 
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term in the water balance model encompasses components such as drainage, runoff, and evapotranspiration, 
evapotranspiration plays the dominant role in most scenarios (Laio et al., 2001; McColl, Wang, et al., 2017). 
The disparity between summer and winter evapotranspiration is pronounced, primarily due to the substan-
tial differences in temperature, solar radiation, vegetation physiology, and soil water availability across these 
seasons. Consequently, the application of a uniform loss function throughout the year fails to accurately capture 
the seasonal variations in SM, as evidenced by Figures 3 and 4, where the performance of PQD significantly 

Figure 4. Spatial distribution of R between the PQD simulations and the Soil Moisture Active Passive observations over the 
conterminous United States, where (a), (c), and (d) represent the metrics obtained using soil moisture data of the entire study 
period, warm seasons (May to October), and cold season (November to April).

Figure 3. Spatial distribution of unbiased root-mean-square error (m 3/m 3) between the PQD simulations and the Soil 
Moisture Active Passive observations over the conterminous United States, where (a), (c), and (d) represent the metrics 
obtained using soil moisture data of the entire study period, warm seasons (May to October), and cold season (November to 
April).

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034457 by G

w
angju Institute of Science and T

echnology (G
IST

), W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

ZHANG ET AL.

10.1029/2023WR034457

13 of 20

diminishes in winter compared to summer. It should be noted that the loss functions employed in this study are 
more representative of the SM characteristics in the warmer seasons, given the predominance of dry-down SM 
data extracted from those periods. The choice of seasonally invariant loss functions and parameters was driven by 
computational considerations and maintaining methodology simplicity. However, for a more precise representa-
tion of SM dry-down behavior and to enhance the quality of the precipitation-driven SM estimations, the imple-
mentation of seasonally adaptive loss functions is indispensable.

Additionally, it should also be noted that the contrast between daytime and nighttime evapotranspiration is stark. 
Some studies posit that nighttime evapotranspiration can be considered negligible, justified by the absence of 
solar radiation and the closure of plant stomata during nighttime (K. Wang & Dickinson, 2012). Given the 12-hr 
temporal resolution employed in this study, this discrepancy becomes a pivotal factor when predicting daytime SM 
from the preceding nighttime values during periods without precipitation. Nonetheless, the utilization of SMAP 
SM data in itself poses challenges for detecting subtle diurnal changes in SM, primarily due to the improper 
assumption of thermal equilibrium for ascending retrieval (O'Neill, Bindlish, et al., 2021). Hence, the estimated 
losses are likely to be inaccurate even if an abundance of consecutive nighttime and daytime dry-down data 
were available. In this context, the concurrent use of descending and ascending SM retrievals primarily serves to 
double data count for acquiring more dry-down segments and optimization benchmarks. Consequently, aligning 
with the method used by Akbar et al. (2018), we made this simplifying assumption that daytime and nighttime 
evapotranspiration rates are equivalent. However, a more refined water balance model could be achieved through 
the integration of a priori knowledge regarding the diurnal cycle of SM, along with the segregation of daytime 
and nighttime evapotranspiration rates, which could be categorized based on solar radiation intensity and diurnal 
temperature range (K. Wang & Dickinson, 2012).

In addition to the performance of the reconstructed loss function, the precipitation input plays a critical role in 
this SM simulation scheme. The precipitation data set not only influences the selection of dry-down SM data but 
also directly affects the estimation of SM evolution over time. Therefore, it is important to account for the errors 
and limitations present in the GPM data set. To date, the accuracy and utility of the GPM product have undergone 
extensive validation from different perspectives and across various regions, and several studies have highlighted 
specific issues with the GPM product (Beck et al., 2019; W. Cui et al., 2020; Mazzoglio et al., 2019; Pradhan 
et al., 2022; Tran et al., 2023). For example, W. Cui et al. (2020) found that the GPM data set tends to overesti-
mate the rainfall hours and precipitating areas in the central and eastern United States. Mazzoglio et al. (2019) 
indicated that the GPM product may struggle to accurately capture extreme rainfall events at aggregation inter-
vals shorter than 12 hr. These errors in the GPM product can propagate into the SM simulations. Moreover, the 
consistency between the precipitation and SM data sets is also crucial. Divergence between the trends of precipi-
tation and SM can lead to a reduced availability of dry-down SM data used for constructing the loss function and 
directly degrade the filled-in SM estimates through simulation. Moreover, the skills of the PQD and PQF are also 
limited by the quality of the SMAP SM retrievals as these retrievals were also employed in building the function 
for Segment B as well as resetting the SM values during the integrations (Equation 6).

The integrated assessment of the ubRMSE (0.05 m 3/m 3) and R (0.69) demonstrates the comparable performance 
of the PQD relative to the SMAP retrievals, affirming the validity of the derived parameters (i.e., ∆Z, α, and β). 
These parameters are necessary for quantifying the integrated losses while the conventional gap-filling methods 
are usually unable to afford such information. The availability of loss estimates holds significant potential for 
other research endeavors, such as the SM to Rain algorithm (SM2RAIN) (Brocca et al., 2014, 2019).

4.3. Validation of Gap-Filled Soil Moisture Products

The performances of the PLO, PQD, and PQF were further evaluated by comparing them against in situ meas-
ured SM over 526 CONUS pixels (Figure S4 in Supporting Information S1). Here, the PLO acts a representa-
tive of the product generated through the framework established by Akbar et al. (2018), with its resultant SM 
data set still pending validation through in situ measurements. The comparative analysis of the PLO, PQD, and 
PQF elucidates the advantages conferred by the integration of supplementary procedures like quantile regression 
and SMAP SM observations into our simulation processes. Given the share of same parameters in SM simu-
lation, comparing PQD with PQF enables a thorough examination of the effects of integrating the full suite of 
SMAP observations into the precipitation-driven simulation, as opposed to exclusively considering dry-down 
SM. Additionally, assessment metrics of another two SMAP-based continuous SM data sets yielded using the 

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034457 by G

w
angju Institute of Science and T

echnology (G
IST

), W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

ZHANG ET AL.

10.1029/2023WR034457

14 of 20

DCT (Section 3.5), and the simple LIP, were also calculated. The LIP SM product was generated by conducting a 
linear temporal interpolation for the gaps among the available SMAP retrievals. Regarding the DCT SM data set, 
only the SMAP retrievals from the neighboring grids surrounding the targeted pixel (as a center of a 9 × 9 matrix) 
have been considered, rather than including the entire three-dimensional SMAP array within the study domain.

The PQF, DCT, and LIP display comparable ubRMSE and R medians (Table  2). The minor degradation of 
PQD relative to PQF could be resulted from the smaller number of SMAP retrievals used during its simulation. 
Given this, a sufficient number of satellite-based SM observations are necessary. Consistent with the results of 
Section 4.1, the distinct inferiority of the PLO could be largely attributed to the different regression techniques 
used for the loss estimations.

Compared to the metric scores of the SMAP observations, the gap-filled portions show comparable performances 
(Table 2). Although the ubRMSE values of SMAP observations slightly outperform the filled-in SM (when more 
digits are examined), the R values of filled-in SM of the DCT and LIP products are unexpectedly higher than 
those of the SMAP data (Table 2). Such small discrepancies between the performances of the SMAP retrievals 
and those exclusively filled data are adequate to demonstrate the validity of the proposed scheme and the derived 
ancillary parameters. It should be noted that the average number of filled-in SM data was around two times rela-
tive to that of the SMAP available samples.

Moreover, the consistency of rainfall-induced SM peaks between each gap-filled data set and in situ measure-
ments was analyzed. It should be noted that rainfall events identified by the NLDAS precipitation product have 
been considered in evaluating the peak-capturing capacity, independent from the GPM precipitation  used in 
deriving the PLO, PQD, and PQF. Those peaks caused by heavy rainfall were majorly investigated here given 
their importance. As shown in Section 3.3, the SM peak consistency was measured by three categorical metrics: 
POD, FAR, and CSI. The POD refers to the ratios of rainfall-induced SM peaks successfully detected by 
SMAP-derived products to all the rainfall-induced SM peaks caught by in situ measurements in the context of 
the NLDAS precipitation, and the optimum POD is 1. Figure 5a shows that the POD medians of the PQF, PQD, 
and PLO are near 1, suggesting that these products could capture almost all heavy rainfall-induced SM peaks. 
The FAR (optimal FAR is 0) represents the fractions of peaks identified by the SMAP-derived data sets but not 
observed by in situ measurements, and it is described in Figure 5b. In contrast, it reveals that the PLO, PQD, and 
PQF hold excessive peaks. Such frequent peak occurrences can be attributed to the forward simulation procedure. 
Generally, a precipitation event is bound to produce one immediate SM peak at the end of the precipitation event 
(Equation 6). Furthermore, the CSI (optimal CSI is 1) reflects an integrated ability of the simulation products to 
capture rainfall-induced SM peaks. The PLO, PQD, and PQF have better CSI values than the DCT and LIP and 
the PQF obtains the highest score (Figure 5c). When considering the categoric metrics of capturing SM peaks 
induced by all the rainfall, the advantages of the PQF over the DCT and LIP can be still observed (Figure S5 in 
Supporting Information S1) in a similar manner shown in Figures 5a and 5c.

A detailed investigation was conducted to understand the contrasting performance rankings of the PQF, DCT, and 
LIP in terms of validation metrics and their ability to capture rainfall-induced SM peaks. The SM time series of 
these products were compared against in situ measurements from three ground stations, focusing on a 4-month 
period with abundant observations over each station. The in situ SM measurements show timely responses to 

Validation type a/product Metric PLO PQD PQF DCT LIP

Overall validation ubRMSE (m 3/m 3) 0.08 0.07 0.06 0.06 0.06

R 0.46 0.59 0.63 0.65 0.65

SMAP-non-synchronous validation ubRMSE (m 3/m 3) 0.09 0.07 0.06 0.06 0.06

R 0.46 0.59 0.63 0.67 0.66

SMAP-synchronous validation ubRMSE (m 3/m 3) 0.08 0.07 0.06 0.06 0.06

R 0.45 0.59 0.64 0.64 0.64

 aOverall, SMAP-non-synchronous, and SMAP-synchronous validation metrics are computed using all the paired data, all the paired simulations non-synchronous with 
the SMAP observations, and all the paired simulation synchronous with the SMAP observations across the five gap-filled data sets, respectively.

Table 2 
Statistic Metrics of Different Gap-Filled Products by Comparing Against In Situ Measurements
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notable precipitation events recorded by the GPM product, resulting in SM peaks (Figures 6a–6c). The PQF prod-
uct closely follows the temporal fluctuations of in situ SM measurements, capturing rainfall-induced SM peaks 
that were not observed by the DCT and LIP. However, there are some differences in SM magnitudes between the 
PQF and in situ data. Figure 6c shows a systematic bias between the SMAP and in situ SM time series, indicat-
ing discrepancies between the two data sets. Several factors could contribute to these differences. First, the use 
of a uniform pixel-scale parameter set across all periods may not accurately capture the local variability of SM. 

Figure 5. Boxplots of the categorical performance metrics of (a) probability of detection, (b) false alarm ratio and (c) critical 
success index for five different Soil Moisture Active Passive-based gap-filled soil moisture (SM) data sets in capturing SM 
peaks caused by the heavy rainfall events (exceeding 80% locally non-zero 12-hr precipitation volumes). Those SM peaks 
observed by in situ SM measurements are used as benchmarks.

Figure 6. Four-month soil moisture time series from the PQF, discrete cosine transform, LIP, Soil Moisture Active Passive, and in situ measurements over three 
International Soil Moisture Network sites: (a) SCAN-Shenandoah (37.9°N, 79.2°W) (b) USCRN-Ithaca_13_E (42.4°N, 76.2°W) and (c) PBO_H2O-SPRECKLESS 
(32.9°N, 115.6°W).
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Second, there are inherent discrepancies between SMAP retrievals and in situ measurements. Additionally, the 
point-scale in situ SM data may not fully represent the variability at the satellite-based 9 km grids. Moreover, 
there can be differences in the measuring depths between the passive microwave SM derivations and ground 
measurements, which can introduce biases in the validation scores (Crow et al., 2012).

In Figures 6a and 6b, the behaviors of SM estimates from the DCT and LIP are abnormal due to the sparse avail-
ability of SMAP retrievals. The LIP displays a linear decline at an extremely slow pace over the 4-month interval 
(Figure 6a) while the DCT shows a smooth sinusoidal variation, only capturing the general increasing trends of 
SM caused by heavy rainfall events (Figures 6a and 6b). Although Section 4.2 indicates that the low availability 
of SMAP retrievals during cold seasons could reduce the performance of PQD at those periods, Figure 6 exhibits 
that the DCT and LIP are more vulnerable to the sparse SMAP samples. The DCT SM product could exhibit 
unnatural fluctuations not observed in other products even when there are sufficient SMAP retrievals (Figure 6c). 
However, the impact of these abnormal fluctuations on the DCT's performance score was limited, partly due to 
the daily availability of in situ measurements.

Despite the slightly better validation results of the DCT and LIP compared to the PQF (Table 2), the detailed 
investigation on SM time series indicated that their performance might not be as good as the metric scores 
suggested. For example, the correlation between the flat line of LIP and in situ data from May to August 2017 
is 0.78 (Table S3 in Supporting Information S1). This high correlation, however, does not necessarily indicate 
that the LIP accurately captures the SM dynamics. The LIP, with its linearly interpolated values, does not reflect 
the actual fluctuations in SM over this period. Despite this, it still maintains a high correlation with the in situ 
data because both data sets share a similar overall trend. This example illustrates that a high R does not always 
equate to an accurate representation of SM dynamics, particularly when one data set exhibits larger or smaller 
fluctuations than the other (Wilks, 2011). Additionally, it is important to note that the R values among the three 
products show a significant difference when only 4-month periods were considered (Table S3 in Supporting 
Information S1). This finding aligns with the work of Al-Yaari et al. (2019), which demonstrated the significant 
influence of data temporal sampling on performance metrics. Recognizing these constraints, the methodology 
presented in this study focuses on evaluating the capability to capture SM peaks induced by rainfall, offering a 
valuable additional tool for validating SM data sets and facilitating various related applications. For instance, 
this approach of evaluating peak-capturing performance could be utilized to preliminarily assess the linearly 
interpolated ASCAT SM time series employed in the SM2RAIN algorithm (Brocca et al., 2019). It is expected 
that areas frequently missing SM peaks may not yield high-quality precipitation estimates through SM2RAIN. 
While assessing peak-capturing capacity may not be highly suited for SM products derived from a single mission 
due to their coarse temporal resolution, it gains significant relevance with the increasing availability of merged 
SM products from multiple sensors, such as ESA CCI and SMOSSMAP-IB, and the advent of sophisticated 
gap-filling techniques (Dorigo et  al.,  2017; Li et  al.,  2022; K. Liu et  al.,  2023; Zheng et  al.,  2023). In these 
contexts, the temporal alignment of SM peaks with intense precipitation events can serve as robust evidence for 
the reliable performance of the SM data set under evaluation.

Additionally, the unique peak capturing capabilities of the PQD and PQF products offer a distinct advantage, 
facilitating the understanding of the hydrological processes. The residence time of SM is a vital indicator of 
the water dynamics at the land-atmosphere interface. To address this, the stored precipitation fraction (Fp), 
was introduced to reflect the averaged fraction of precipitation remaining in the surface soil layer after 3 days 
post-precipitation (McColl, Alemohammad, et al., 2017). However, Fp is an abstract and normalized indicator, 
likely disturbed by temporal mismatching between the precipitation and SM data sets. Since both PQD and PQF 
products are adequate to represent SMAP varying patterns, their SM peaks as well as the SM data captured 3 days 
post-peaks, can be used to derive a metric (analogous to Fp) that specifically gauges the quantity of precipitation 
inputs retained in the soil after a 3-day period. Furthermore, instead of the commonly used 50 mm depth, the 
active hydrological system's depth, ∆Z, appears to be a more suitable parameter to measure the SM memory 
of wet anomalies. Moreover, the peak capturing feature of the PQD and PQF extends its utility to estimating 
the response magnitude (i.e., the difference between the minimum and maximum SM during storm) and the 
peak-to-peak time (i.e., the time difference between precipitation peak and SM peak) (Singh et al., 2021). Corre-
lating these metrics with topographic variables and vegetation indexes can unveil the primary factors driving SM 
response to rainfall. Furthermore, estimating lag times between SM and runoff peaks, when data are available, 
could enrich our grasp of SM-runoff process (Singh et al., 2021). Given the considerable influence of antecedent 
SM conditions on assessing flood severity, integrating SM-runoff peak lag times with the process-based water 

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034457 by G

w
angju Institute of Science and T

echnology (G
IST

), W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

ZHANG ET AL.

10.1029/2023WR034457

17 of 20

balance framework presented in this study—initialized with preceding observed SM and under diverse hypo-
thetical precipitation scenarios—could offer a supplementary tool for flood prediction in regions susceptible to 
flooding (Haga et al., 2005; Sharma et al., 2018; Wasko & Nathan, 2019). In the context of climate change with 
increasing precipitation extremes, such studies are of great importance to identify flooding-prone regions and to 
advance water resources management.

5. Summary and Conclusion
In this study, a 12-hourly continuous SM product (PQF) was generated for the CONUS region from 2015 to 
2021. Notably, regions identified as unsuitable for SM retrievals through satellite-based microwave observations 
have been excluded, according to the SMAP quality flag. This newly yielded data set is composed of SMAP 
retrievals and filled-in SM estimates derived through water balance budgeting. Gaps in the combined descending 
and ascending SMAP data set were filled using SM simulations estimated using the precipitation and hydro-
logic loss in the preceding 12-hr slots. The integrated loss for each 12-hr interval was approximated using a loss 
function derived from SMAP dry-down SM. Here, a novel approach that combines quantile regression with a 
performance-driven parameter has been proposed to account for the wide range of losses at the high SM magni-
tudes. Compared to the PLD yielded using the LOWESS with a fixed smoother, the PQD product based on this 
new method noticeably improved the performance scores by comparing against the SMAP retrievals.

The PQD product, which only includes SMAP dry-down retrievals as reset points, was used to determine the 
optimal parameters for the generation of the final PQF data set. The PQD product exhibited similar features to 
SMAP SM retrievals, with median R of 0.69 and a median ubRMSE of 0.05 m 3/m 3. A seasonal analysis of the 
PQD product revealed its deteriorated performance during the cold seasons.

To evaluate the 9 km sub-daily PQD and PQF SM data sets, comparisons were made with in situ surface SM meas-
urements over 526 CONUS pixels and with the SMAP-based 12-hr SM products through other filling approaches 
(i.e., DCT and LIP). The PQF, DCT, and LIP exhibited similar accuracy, with an ubRMSE of 0.06 m 3/m 3 and 
an R of 0.63. Notably, the exclusive filled-in SM estimates of PQF displayed a comparable performance with the 
SMAP retrievals, demonstrating the effectiveness of this process-based water balance scheme. In addition to the 
conventional validation metrics, the ability of the PQD, PQF, DCT, and LIP to capture rainfall-induced SM peaks 
was assessed where the rainfall-induced SM peaks observed by in situ measurements served as the reference. The 
precipitation-driven PQF data sets showed superior performance compared to other gap-filling approaches in 
capturing SM responses to heavy rainfall events.

Based on the available results, the PQF product is considered the continuous SMAP-based SM data set of the best 
quality. However, it's important to acknowledge the limitations of the proposed process-based water balance scheme. 
The abrupt varying patterns in the PQD and PQF compared to observed time series can be partly ascribed to the 
lack of SM diurnal cycle information, such as the nighttime re-moistening (O'Neill, Bindlish, et al., 2021). Inaccu-
rate loss quantification is another crucial factor, as existing loss functions may not be able to reflect the scattering 
of observed losses for the same SM initial. Additionally, SM simulations tend to have a higher SM upper bound 
than observations primarily because of inadequate representation of drainage and runoff during heavy precipitation. 
Furthermore, SM simulations filling longer SMAP gaps tend to introduce greater uncertainty. As such, a flag file 
has been generated to mark filled-in SM values for long-term SMAP gaps and those with impractical values.

The incorporation of novel features and identification of deficiencies in this study offers valuable insights and direc-
tions for future research. As a single loss function seems inadequate to reflect various losses under the initial SM of 
similar magnitudes, it is essential to supplement uncertainty information for the derived losses and filled-in SM data. 
This could be achieved through the use of an error propagation method (e.g., Monte Carlo simulation), which would 
enhance the interpretation of variability and uncertainty associated with the derived loss and simulated SM. Addi-
tionally, given the significant influence of precipitation inputs on driving SM estimates in the proposed water balance 
model, it is crucial to conduct sensitivity tests using different precipitation data sets. These tests can provide valuable 
supplementary information for evaluating the performance and reliability of the precipitation data used in the model.

Data Availability Statement
The datasets utilized in this study come from various data sources. The SMAP soil moisture data is provided by 
O'Neill, Chan, et al. (2021). The ERA5 Land Data comes from Muñoz-Sabater (2019), while the GPM IMERG 
dataset is sourced from Huffman et  al.  (2019). For validation, in situ soil moisture data were sourced both 
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from the International Soil Moisture Network at ISMN (2022) and from the TxSON Network as provided by 
Bongiovanni and Caldwell (2019). Additionally, the NLDAS hourly precipitation data is available from NLDAS 
project (2021).
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